Intracellular distribution of Cu(I): De-regulation & exploitation in pathogen-control.
Cu(I) 的细胞内分布:解除管制
基本信息
- 批准号:BB/H011110/2
- 负责人:
- 金额:$ 38.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Copper is widely used in the agrochemical industry as a fungicide and Syngenta are investigating new copper based formulations with greater efficacy and/or requiring lower environmental copper input. Fortuitously, one of the Cu(I)-chelator compounds produced by synthetic chemists at Syngenta appears to de-regulate copper homeostasis in S. cereviasiae, as well as inhibiting growth of several pathogenic fungi. Via such de-regulation, this Cu(I)-chelator has the potential to provide insight into the pathways that deliver this metal to its destinations inside living cells. Specifically, preliminary data suggest that the sources of copper for each copper delivery pathway are not identical. This is a rare opportunity to explore fundamental questions at the heart of the cell biology of metals, while simultaneously tackling issues of direct relevance to an agrochemical company. Syngenta would like to understand the biochemical basis via which the Cu(I)-chelator acts if it is to be pursued commercially, and the 'Metals in Cells Group' at Newcastle University are eager to use the Cu(I)-chelator to explore how copper is correctly targeted inside cells. Copper is essential for enzymes such as cytochrome oxidase, superoxide dismutase 1, and (in plants) plastocyanin. Some metals, especially copper, have a tendency to form much tighter complexes with proteins than do others. Cells must maintain exceptionally low buffered cytosolic concentrations of copper in order to minimise the mis-population of proteins that require the less competitive metals. Copper must also be tightly controlled due to its propensity to engage in redox chemistry such as the Fenton reaction which generates deadly hydroxyl radicals. To avoid copper-release in the cytosol it is supplied to copper requiring proteins under kinetic control, meaning that copper is delivered to its correct destinations by specific 'copper metallochaperones'. The metal is passed from the copper metallochaperones to their partners by sequences of ligand-exchange reactions. In most eukaryotic cells, including fungi, these include copper metallochaperones for cytochrome oxidase in mitochondria, one for superoxide dismutase 1 in the cytosol and finally one for the trans-Golgi network. However, it is unclear where the copper metallochaperones themselves obtain copper and it is also unclear how the routing of copper to these different cellular destinations is prioritised, especially when copper is in short supply. These are fundamental unknowns in regard to copper homeostasis in all organisms; plants, fungi, bacteria and animals including humans. An intriguing hypothesis is that the copper chaperones for cytochrome oxidase have access to copper released at cuproprotein turnover, while those for SOD1 and for the trans-Golgi network predominantly have access to newly imported copper. This would ensure that as copper levels decline the metal ions become predominantly routed to a most vital intracellular destination, namely cytochrome oxidase. Fungal cells treated with the Cu(I)-chelator generated by Syngenta chemists appear to detect high intracellular copper concentrations by switching on expression of (metallothionein Cup1-1 and Cup1-2) genes whose products mop up surplus copper. However, the treated cells concurrently exhibit phenotypes consistent with insufficient copper reaching cytochrome oxidase. A goal of this programme is to measure the respective cupro-enzyme activities and quantify the amounts of copper reaching the different destinations. This will establish if there are distinct sources of copper for the different copper delivery pathways.
铜在农业化学工业中被广泛用作杀菌剂,正正达正在研究具有更大疗效和/或需要较低环境铜输入的新的基于铜的配方。幸运的是,先正达合成化学家生产的Cu(i) - 丝状化合物之一似乎在酿酒酵母中脱离调节铜稳态,并抑制了几种致病真菌的生长。通过这种脱离调节,这种Cu(i)chelator有可能深入了解将这种金属传递到活细胞内部目的地的途径。具体而言,初步数据表明,每个铜递送途径的铜来源并不相同。这是一个难得的机会,可以探索金属细胞生物学的核心,同时解决与农业化学公司直接相关的问题。先正达想了解cu(i)chelator在商业上进行的cu(i)轮轴的作用,而纽卡斯尔大学的“细胞组中的金属”都渴望使用Cu(i)chelator来探索如何正确靶向铜的铜。铜对于诸如细胞色素氧化酶,超氧化物歧化酶1和(在植物中)塑蛋白的酶是必不可少的。有些金属,尤其是铜,比其他金属倾向于与蛋白质形成更紧密的复合物。细胞必须保持极低的铜的缓冲胞质浓度,以最大程度地减少需要竞争力较低的金属的蛋白质的错误人群。铜还必须严格控制,因为它倾向于从事氧化还原化学的趋势,例如产生致命的羟基自由基的芬顿反应。为了避免在细胞质中释放铜,它可以提供给需要蛋白质在动力学控制下蛋白质的铜,这意味着铜是通过特定的“铜金属伴侣”传递到其正确目的地的。金属通过配体交换反应的序列从铜金属伴侣传递给其伴侣。在包括真菌在内的大多数真核细胞中,这些细胞包括线粒体中细胞色素氧化酶的铜金属伴侣,一种用于细胞质中的超氧化物歧化酶1,最后一个用于反式高尔基网络。但是,目前尚不清楚铜金属伴侣本身可以在哪里获得铜,也不清楚如何优先考虑铜与这些不同的细胞目的地的路由,尤其是当铜供应不足时。这些是所有生物体中铜稳态的基本未知数。植物,真菌,细菌和包括人类在内的动物。一个有趣的假设是,用于细胞色素氧化酶的铜伴侣可以进入咖啡蛋白周转时释放的铜,而SOD1和trans-Golgi网络的铜伴侣主要可以访问新进口的铜。这将确保随着铜水平的下降,金属离子主要被路由到最重要的细胞内目的地,即细胞色素氧化酶。先正达化学家生成的Cu(I)胆管处理的真菌细胞似乎通过打开(Metallothionein CUP11-1-1-1和CUP1-2)基因的表达来检测高细胞内铜的浓度,其产物会拖延盈余铜。然而,经过处理的细胞同时表现出与未达到细胞色素氧化酶的铜不足一致的表型。该程序的一个目标是测量各自的库酶活性,并量化到达不同目的地的铜的数量。这将确定是否有不同的铜来源对于不同的铜输送途径。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Promiscuity and preferences of metallothioneins: the cell rules.
- DOI:10.1186/1741-7007-9-25
- 发表时间:2011-04-28
- 期刊:
- 影响因子:5.4
- 作者:Foster AW;Robinson NJ
- 通讯作者:Robinson NJ
Structural biology: a platform for copper pumps.
结构生物学:铜泵平台。
- DOI:10.1038/475041a
- 发表时间:2011
- 期刊:
- 影响因子:64.8
- 作者:Robinson NJ
- 通讯作者:Robinson NJ
A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae.
- DOI:10.1111/mmi.12661
- 发表时间:2014-07
- 期刊:
- 影响因子:3.6
- 作者:Foster AW;Dainty SJ;Patterson CJ;Pohl E;Blackburn H;Wilson C;Hess CR;Rutherford JC;Quaranta L;Corran A;Robinson NJ
- 通讯作者:Robinson NJ
Metal specificity of cyanobacterial nickel-responsive repressor InrS: cells maintain zinc and copper below the detection threshold for InrS.
- DOI:10.1111/mmi.12594
- 发表时间:2014-05
- 期刊:
- 影响因子:3.6
- 作者:Foster AW;Pernil R;Patterson CJ;Robinson NJ
- 通讯作者:Robinson NJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Robinson其他文献
Nigel Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Robinson', 18)}}的其他基金
Understanding mis-metalation of native versus heterologously expressed protein
了解天然与异源表达蛋白质的错误金属化
- 批准号:
BB/W015749/1 - 财政年份:2022
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
A calculator for metalation inside a cell
细胞内金属化计算器
- 批准号:
BB/V006002/1 - 财政年份:2021
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
Elements of Bioremediation, Biomanufacturing & Bioenergy (E3B): Metals in Biology
生物修复、生物制造的要素
- 批准号:
BB/S009787/1 - 财政年份:2019
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
METALLOCHAPERONES: The partitioning of metals to delivery pathways
金属伴侣:金属到输送途径的分配
- 批准号:
BB/R002118/1 - 财政年份:2017
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
Cell circuitry for metals: Integrative metabolism for cobalt uptake and cobalamin production
金属的细胞电路:钴吸收和钴胺素生成的综合代谢
- 批准号:
BB/L009226/1 - 财政年份:2014
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
Metals in Biology: The elements of Biotechnology and Bioenergy
生物学中的金属:生物技术和生物能源的元素
- 批准号:
BB/L013711/1 - 财政年份:2014
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
Engineering nickel supply to cyanobacterial hydrogenase to test the relationship between enzyme metallation and metal-sensing
对蓝藻氢化酶进行工程镍供应,以测试酶金属化和金属传感之间的关系
- 批准号:
BB/K00817X/1 - 财政年份:2013
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
Metal-sensing in Salmonella: A model for targeting a network that differentiates metals
沙门氏菌金属传感:针对区分金属的网络的模型
- 批准号:
BB/J017787/1 - 财政年份:2012
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
The discernment of metals by a set of DNA-binding transcriptional regulators
通过一组 DNA 结合转录调节因子来识别金属
- 批准号:
BB/H006052/2 - 财政年份:2011
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
Intracellular distribution of Cu(I): De-regulation & exploitation in pathogen-control.
Cu(I) 的细胞内分布:解除管制
- 批准号:
BB/H011110/1 - 财政年份:2010
- 资助金额:
$ 38.49万 - 项目类别:
Research Grant
相似国自然基金
硫化物饱和条件下Cu、Mo在流体-熔体间分配行为的实验研究
- 批准号:42303074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于 SLC31A1/FDX1/LIAS 通路探讨解毒活血中药组分配伍调节铜死亡相关线粒体功能障碍抗 AS 机制
- 批准号:82374281
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
氮胁迫下莱茵衣藻铜胺氧化酶基因在碳素分配中的作用
- 批准号:32260911
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
铜在不混溶高硅熔体和成矿流体体系分配行为的实验岩石学研究
- 批准号:42002059
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
富氧底吹铜锍连续吹炼关键杂质元素强化脱除调控研究
- 批准号:51904351
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Speciation and sectional distribution of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the South Pacific and Indian Oceans
南太平洋和印度洋 Al、Mn、Fe、Co、Ni、Cu、Zn、Cd 和 Pb 的形态和剖面分布
- 批准号:
21K17877 - 财政年份:2021
- 资助金额:
$ 38.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultrafast photoexcited dynamics of Cu(I) complexes with thermally activated delayed fluorescence in solid-state thin layers
固态薄层中具有热激活延迟荧光的 Cu(I) 配合物的超快光激发动力学
- 批准号:
20K05446 - 财政年份:2020
- 资助金额:
$ 38.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative Cu-Homeostasis in Live Mammalian Cells at the Single-Molecule Level
单分子水平上活哺乳动物细胞的定量铜稳态
- 批准号:
10163689 - 财政年份:2019
- 资助金额:
$ 38.49万 - 项目类别:
Quantitative Cu-Homeostasis in Live Mammalian Cells at the Single-Molecule Level
单分子水平上活哺乳动物细胞的定量铜稳态
- 批准号:
10405568 - 财政年份:2019
- 资助金额:
$ 38.49万 - 项目类别:
Quantitative Cu-Homeostasis in Live Mammalian Cells at the Single-Molecule Level
单分子水平上活哺乳动物细胞的定量铜稳态
- 批准号:
10582183 - 财政年份:2019
- 资助金额:
$ 38.49万 - 项目类别: