A systems approach to understanding sensory-motor control of aimed limb movements

理解目标肢体运动的感觉运动控制的系统方法

基本信息

  • 批准号:
    BB/H014047/1
  • 负责人:
  • 金额:
    $ 81.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Our own limb movements - and even those of insects - far exceed in dexterity and robustness those of any robot. Accidents or medical disorders such as large fibre sensory neuropathy that impair or prevent controlled limb movements have profound effects on the quality of life of those affected. We seek to understand how the brain controls aimed limb movements so that it is possible to better understand what goes wrong in disease processes, and to develop better medical interventions. Brain function in humans is exceptionally complex, and it is difficult or impossible to carry out many of the sorts of experiments that are required to investigate it. We therefore work with a much simpler animal - a locust - in which we can record, analyse and manipulate the activity of individual nerve cells while it makes aimed movements. The movements are analysed using video-based movement tracking and such data are used to test our computer models. A great advantage of our approach is that we have a much more complete understanding of the roles of particular nerve cells in a locust than we do in humans or any other mammals. The problems that a locust must solve in making an aimed movement are the same as those faced by humans, so we seek out the general principles of organisation that underpin all such movements. In this proposal we set out to analyse how groups of nerve cells operate together to generate aimed movements, and to determine how signals are transferred between different parts of the nervous system. A second strand of our research develops software that enables both us and clinicians with whom we collaborate to analyse nerve cell signals recorded from the brain. We have developed powerful methods to permit detection of the activity of single nerve cells in recordings made from the brains of awake patients, and have used these to reveal important aspects of how these cells respond to complex stimuli. We now wish to develop these methods to permit the detection of many nerve cells using recordings from multiple electrodes, and to work much more quickly. Such advances in signal processing will be very important for improving our understanding of human brain function and will be crucial in the development of prosthetic limbs that are controlled interactively by the activity of a patient's brain. Developing such methods requires the processing of large amounts of data from real recordings, which is very difficult and costly to obtain from human patients. We will instead carry out our development work using signals recorded from locusts. Our ability to recognise individual identified cells in a locust provides us with extremely powerful ways of validating our approach. To achieve our aims we have the following main objectives: 1. Develop, validate, use and make available to other users a powerful improved version of our software for processing neural data. What aspects of nerve cell signals permit us to best identify their activity in a complex recording? How can we classify the firing of these cells most accurately and most rapidly? 2. Characterise the separate roles of motor nerve cells that drive leg flexion during an aimed limb movement. How do the signals of each cell differ, and what are the relationships between the patterns seen in the different cells? We will develop new techniques for recording many single cells simultaneously. 3. Analyse the patterns of activity in nerve cells that carry information between different parts of the nervous system. What are their inputs and outputs? Can our software automatically distinguish between different types of cells in complex multiple-cell recordings? 4. Characterise the responses of sensory nerve cells that signal leg position. How do these influence an aimed movement, and how do they change after damage to the sense organ?
我们自己的肢体运动——甚至昆虫的肢体运动——在灵巧性和健壮性上远远超过任何机器人。事故或医学疾病,如大纤维感觉神经病变,损害或阻止控制肢体运动,对受影响者的生活质量产生深远影响。我们试图了解大脑是如何控制目标肢体运动的,这样就有可能更好地了解疾病过程中的问题,并开发更好的医疗干预措施。人类的大脑功能异常复杂,为了研究它而进行的许多实验都很难或不可能进行。因此,我们研究的是一种更简单的动物——蝗虫,我们可以记录、分析和操纵单个神经细胞在定向运动时的活动。使用基于视频的运动跟踪来分析这些运动,这些数据用于测试我们的计算机模型。我们的方法的一个巨大优势是,我们对蝗虫中特定神经细胞的作用的了解比我们对人类或任何其他哺乳动物的了解都要全面得多。蝗虫在进行有目标的运动时必须解决的问题与人类面临的问题相同,因此我们寻找支撑所有这些运动的组织的一般原则。在这个提议中,我们开始分析神经细胞群是如何一起运作来产生目标运动的,并确定信号是如何在神经系统的不同部分之间传递的。我们研究的第二部分是开发软件,使我们和与我们合作的临床医生能够分析从大脑记录的神经细胞信号。我们已经开发出了强大的方法来检测清醒患者大脑中单个神经细胞的活动,并利用这些方法揭示了这些细胞如何对复杂刺激作出反应的重要方面。我们现在希望发展这些方法,以允许使用多个电极的记录来检测许多神经细胞,并且工作得更快。信号处理方面的这些进展对于提高我们对人类大脑功能的理解非常重要,对于开发由患者大脑活动交互控制的假肢至关重要。开发这种方法需要处理来自真实记录的大量数据,而从人类患者那里获得这些数据非常困难且成本高昂。相反,我们将利用蝗虫记录的信号开展我们的开发工作。我们在蝗虫中识别单个细胞的能力为我们验证我们的方法提供了极其有力的方法。为了实现我们的目标,我们有以下主要目标:开发,验证,使用并向其他用户提供我们处理神经数据的软件的强大改进版本。神经细胞信号的哪些方面允许我们在复杂的记录中最好地识别它们的活动?我们怎样才能最准确、最迅速地对这些细胞的放电进行分类呢?2. 描述运动神经细胞在目标肢体运动中驱动腿部屈曲的不同作用。每个细胞的信号是如何不同的,不同细胞中看到的模式之间的关系是什么?我们将开发同时记录多个单细胞的新技术。3. 分析在神经系统不同部分之间传递信息的神经细胞的活动模式。它们的输入和输出是什么?我们的软件能在复杂的多细胞记录中自动区分不同类型的细胞吗?4. 描述腿部位置信号的感觉神经细胞的反应。它们是如何影响目标运动的?在感觉器官受损后,它们又是如何变化的?

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of spike sorting techniques to identify motor neurons in electromyogram recordings
使用尖峰分类技术识别肌电图记录中的运动神经元
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bradley, S
  • 通讯作者:
    Bradley, S
Identification of individual neurons in EMG and hook electrode recordings using spike sorting techniques
使用尖峰分选技术识别肌电图和钩电极记录中的单个神经元
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bradley,SA
  • 通讯作者:
    Bradley,SA
Evaluation of linear and non-linear activation dynamics models for insect muscle
昆虫肌肉线性和非线性激活动力学模型的评估
  • DOI:
    10.1371/journal.pcbi.1007437
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Harischandra N
  • 通讯作者:
    Harischandra N
Contribution of joint-intrinsic forces to passive limb movements
关节内力对被动肢体运动的贡献
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matheson, T
  • 通讯作者:
    Matheson, T
Passive biomechanical properties and spike-movement transfer in an insect limb joint
昆虫肢体关节的被动生物力学特性和尖峰运动传递
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ache, JM
  • 通讯作者:
    Ache, JM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Matheson其他文献

Supernovae 2004dx, 2004eh, 2004ep, 2004eq, 2004ev, 2004ex-2004ez
超新星 2004dx、2004eh、2004ep、2004eq、2004ev、2004ex-2004ez
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. V. Filippenko;Ryan J. Foley;Ryan Chornock;Thomas Matheson
  • 通讯作者:
    Thomas Matheson
To catch a stellar thief
抓住一个星际小偷
  • DOI:
    10.1038/427109a
  • 发表时间:
    2004-01-08
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Thomas Matheson
  • 通讯作者:
    Thomas Matheson
Octopamine modulates the responses and presynaptic inhibition of proprioceptive sensory neurones in the locust Schistocerca gregaria
章鱼胺调节蝗虫本体感觉神经元的反应和突触前抑制

Thomas Matheson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Matheson', 18)}}的其他基金

BAYSIG: a platform for Bayesian analysis of large and complex datasets
BAYSIG:大型复杂数据集贝叶斯分析平台
  • 批准号:
    BB/K020242/1
  • 财政年份:
    2014
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Research Grant
Computational approaches to neuroscience research
神经科学研究的计算方法
  • 批准号:
    BB/I019065/1
  • 财政年份:
    2011
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Fellowship
Integrative analysis of serotonin-mediated behavioural phase transition in the desert locust
沙漠蝗虫血清素介导的行为相变的综合分析
  • 批准号:
    BB/H002510/1
  • 财政年份:
    2009
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Research Grant
Behavioural Physiological and Molecular Mechanisms of Phase Change in Locusts
蝗虫相变的行为生理和分子机制
  • 批准号:
    BB/D018587/1
  • 财政年份:
    2006
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Research Grant
Plasticity in aimed limb movements
目标肢体运动的可塑性
  • 批准号:
    BB/C005538/1
  • 财政年份:
    2006
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Research Grant

相似国自然基金

量化 domain 的拓扑性质
  • 批准号:
    11771310
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
  • 批准号:
    50908133
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
  • 批准号:
    50671047
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
  • 批准号:
    30470298
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Utilising a systems approach to advance our understanding of immune responses to viral vectors
利用系统方法增进我们对病毒载体免疫反应的理解
  • 批准号:
    BB/Y513428/1
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Training Grant
Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
  • 批准号:
    10721233
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
  • 批准号:
    10750235
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
Surgical site infections and the microbiome: Understanding the pathogenesis of surgical site infections
手术部位感染和微生物组:了解手术部位感染的发病机制
  • 批准号:
    10741180
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
Understanding the relationship between nurse staffing and outcomes: impact of individual nurse education, expertise, and effort level on individual patient outcomes
了解护士人员配置与结果之间的关系:护士个体教育、专业知识和努力水平对个体患者结果的影响
  • 批准号:
    10642570
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
Deciphering the complex pharmacology of CB1: towards the understanding of a third signaling pathway
解读 CB1 的复杂药理学:了解第三条信号通路
  • 批准号:
    10667865
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
A Novel Multiomics-based Systems Biology Approach to Understanding Cardiac Regeneration in Swine
一种基于多组学的新型系统生物学方法来了解猪的心脏再生
  • 批准号:
    10599610
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
  • 批准号:
    2330212
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
    Standard Grant
Understanding and targeting non-genetic mechanisms of drug resistance
了解和针对耐药性的非遗传机制
  • 批准号:
    10590490
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
Understanding the mechanisms of congenital hydrocephalus using genomic sequencing approaches
使用基因组测序方法了解先天性脑积水的机制
  • 批准号:
    10789333
  • 财政年份:
    2023
  • 资助金额:
    $ 81.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了