Investigating cortical pathways with diffusion-tensor imaging (DTI) manganese-enhanced MRI and modern histological techniques in monkeys and humans
利用扩散张量成像 (DTI) 锰增强 MRI 和现代组织学技术研究猴子和人类的皮质通路
基本信息
- 批准号:BB/H016902/1
- 负责人:
- 金额:$ 129.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Studying brain anatomy used to mean opening up a skull and looking at post mortem brain slices. Not really a good option to study brain connections in living humans. Tracing connections in the human brain is particularly difficult because dead nerve cells do not transport dyes and tracers well. In experimental animals the neuronal tracers are transported in the living brain but to visualize at the results, the animal has to be sacrificed. Therefore, there has been tremendous excitement about recent developments in Magnetic Resonance Imaging (MRI) that allow us to trace connections non-invasively in the living brain. But these techniques measure anatomical structures indirectly by their effect on movement of water or ions. Therefore, their results need to be calibrated against more detailed and accurate measurement of connections with invasive neuroanatomical techniques in animals. We will carry out imaging experiments in monkeys and humans. These data will be compared with those obtained with more established and accurate anatomical techniques in the monkey in order to gain a better understanding about what these new methods exactly measure. The pathway we investigate with these methods connects neurons that contribute to making simple decisions. Imagine playing tennis: when a ball comes towards you, you have to look and decide on its approach before being able to hit it back. Our senses to gather such information about the world around us. Often, the next stage after getting this information is to decide what to do with it - we make a decision. In the tennis example, we decide which trajectory the ball is likely to take and how we would like to respond. Finally we may want to execute this movement based on what we have seen. Our brain accomplishes such transformations of sensory information into action fast and effectively all the time (maybe not for everybody with regards to tennis). Similar processes might underlie more deliberate, slower decision processes, like smelling apples in a fruit bowl and deciding which one to pick up to eat. Our brain is divided up into interconnected regions that deal separately with different types of sensory information, such as visual information from our eyes, touch information from our skin. In addition, various parts of the brain are responsible for controlling our muscles for movement or verbal responses. In between these sensory and motor regions, there are brain areas that we believe can transform the information into movements, including those that help us to make decisions. One area we are looking at is an area of the visual system, called area V5/MT, which is particularly sensitive to moving objects. We want to test whether this area is connected directly to another area, known as LIP that is believed to be central to decision-making. Alternatively other intermediate brain areas might be involved. We will take advantage of new non-invasive techniques in MRI that allow us to trace connections between different brain areas. Using MRI is particularly useful, as it can give us an insight into the connections of the human brain in healthy people as well as in patients, for instance after stroke. Better validation of what these new techniques measure could also mean that anatomy on animal brains could be done without the need to sacrifice the animal.
研究大脑解剖学过去意味着打开头骨并观察尸检脑片。这并不是研究活人大脑连接的好方法。追踪人脑中的连接尤其困难,因为死亡的神经细胞不能很好地运输染料和示踪剂。在实验动物中,神经元示踪剂在活着的大脑中运输,但为了观察结果,动物必须被牺牲。因此,磁共振成像(MRI)的最新发展让我们能够非侵入性地追踪活着的大脑中的连接,这让人非常兴奋。但这些技术通过对水或离子运动的影响来间接测量解剖结构。因此,他们的结果需要根据更详细和准确的动物侵入性神经解剖学技术的连接测量进行校准。我们将在猴子和人类身上进行成像实验。这些数据将与在猴子身上使用更成熟和更准确的解剖学技术获得的数据进行比较,以便更好地了解这些新方法到底测量了什么。我们用这些方法研究的路径连接了有助于做出简单决定的神经元。想象一下打网球:当一个球向你靠近时,你必须先看着它的路线并决定它的路线,然后才能回击。我们的感官来收集关于我们周围世界的这些信息。通常,在获得这些信息后的下一个阶段是决定如何处理这些信息--我们做出决定。在网球的例子中,我们决定球可能走的轨迹以及我们想要如何回应。最后,我们可能想要根据我们所看到的情况来执行这一运动。我们的大脑每时每刻都能快速而有效地将感觉信息转化为行动(可能不是每个人都能打网球)。类似的过程可能是更深思熟虑、更慢的决策过程的基础,比如闻一闻水果碗里的苹果,然后决定拿起哪个吃。我们的大脑被分成几个相互关联的区域,分别处理不同类型的感觉信息,如来自我们眼睛的视觉信息,来自我们皮肤的触摸信息。此外,大脑的不同部分负责控制我们的肌肉运动或言语反应。在这些感觉和运动区之间,有一些我们认为可以将信息转化为动作的大脑区域,包括那些帮助我们做出决定的区域。我们正在观察的一个区域是视觉系统中的一个区域,称为区域V5/MT,它对移动的对象特别敏感。我们想要测试这个区域是否直接连接到另一个区域,即被认为对决策至关重要的LIP区域。或者,其他中间脑区也可能参与其中。我们将利用MRI中的新的非侵入性技术,使我们能够追踪不同大脑区域之间的联系。使用核磁共振特别有用,因为它可以让我们深入了解人类大脑在健康人和患者中的联系,例如中风后。更好地验证这些新技术的测量结果也可能意味着,在不需要牺牲动物的情况下,可以对动物的大脑进行解剖。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception.
演奏电灯管弦乐队 - 视觉皮层的电刺激阐明了感知的神经基础。
- DOI:10.1098/rstb.2014.0206
- 发表时间:2015-09-19
- 期刊:
- 影响因子:0
- 作者:Cicmil N;Krug K
- 通讯作者:Krug K
Differences in Frontal Network Anatomy Across Primate Species
- DOI:10.1523/jneurosci.1650-18.2019
- 发表时间:2020-03-04
- 期刊:
- 影响因子:5.3
- 作者:Barrett, Rachel L. C.;Dawson, Matthew;Catani, Marco
- 通讯作者:Catani, Marco
Patterns of label within MST following retrograde tracer injection in V5/MT of the rhesus macaque
恒河猴 V5/MT 逆行示踪剂注射后 MST 内的标记模式
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Ahmed B
- 通讯作者:Ahmed B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristine Krug其他文献
Anatomical circuits for flexible spatial mapping by single neurons in posterior parietal cortex
后顶叶皮层单个神经元灵活空间映射的解剖电路
- DOI:
10.1101/2024.04.23.590686 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bashir Ahmed;Hee Kyoung Ko;Maria Rüsseler;Jackson E. T. Smith;Kristine Krug - 通讯作者:
Kristine Krug
Kristine Krug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
Cortical Hem与FoxG1相互作用调控齿状回发育的分子机制研究
- 批准号:31171040
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
损伤和修复过程中皮层神经元钙稳态调控机制研究
- 批准号:30670500
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
去除corticl hem 对大脑皮层和海马发育的影响
- 批准号:30440090
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:专项基金项目
相似海外基金
CRCNS: Identifying principles of auditory cortical organization with machine learning
CRCNS:通过机器学习识别听觉皮层组织的原理
- 批准号:
10830506 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
- 批准号:
10737217 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Role of Prefrontal Cortical Projections to the Midbrain in Alcohol-Induced Cognitive Deficits in Mice
前额皮质投射到中脑在小鼠酒精引起的认知缺陷中的作用
- 批准号:
10751160 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Roles of higher-order visual thalamus in state-dependent corticocortical communication
高阶视觉丘脑在状态依赖性皮质通讯中的作用
- 批准号:
10892334 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
- 批准号:
10721221 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
The effect of aging and cognitive impairment on prefrontal cortical inputs to motor cortical outputs during standing balance control
站立平衡控制过程中衰老和认知障碍对前额皮质输入对运动皮质输出的影响
- 批准号:
10607724 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Elucidating the Functions of Cortico-Cortical and Cortico-Subcortical-Cortical Pathways in Inter-areal Information Processing
阐明皮质-皮质和皮质-皮质下-皮质通路在区域间信息处理中的功能
- 批准号:
23K14284 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cellular Mechanisms of State-Dependent Processing in Visual Cortex
视觉皮层状态相关处理的细胞机制
- 批准号:
10736387 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Electrical stimulation to control feedback modulation of perception
电刺激控制感知的反馈调制
- 批准号:
10728455 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别:
Targeting Cholinergic Deficits with Retinoic Acid after TBI
使用视黄酸治疗 TBI 后的胆碱能缺陷
- 批准号:
10741924 - 财政年份:2023
- 资助金额:
$ 129.32万 - 项目类别: