Positive control of the primary sigma factor of actinomycetes
放线菌初级西格玛因子的阳性对照
基本信息
- 批准号:BB/I003045/1
- 负责人:
- 金额:$ 49.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacteria are of enormous economic and social importance and we benefit from their ability to synthesise valuable products (e.g. antibiotics, biofuels), preserve food, and bio-transform industrial waste, while facing a constant battle against pathogenic bacteria that evolve ways of evading current treatments. In order to fully exploit bacteria for industrial processes and to meet challenges faced by emerging pathogens we need to understand how bacteria control the expression of their genes. Gene expression starts with the binding of an enzyme called RNA polymerase to DNA promoter elements that are located upstream of protein coding sequences. RNA polymerase (RNAP) catalyses the production of an RNA copy of the gene in a process called transcription which, in most cases, is then translated by ribosomes in the production of proteins. The frequency of transcription initiation is controlled by regulatory proteins, most of which bind to DNA in the promoter region, often also interacting with RNAP. RNAP is a multi-subunit complex consisting of a core enzyme of five subunits and a dissociable sixth subunit called sigma that is required for promoter binding and the melting of DNA to reveal the template strand. Soon after transcription initiation, after RNAP has escaped from the promoter, the sigma subunit dissociates. Bacteria usually contain multiple sigma factors including one essential primary sigma factor responsible for most transcription in actively growing cells, and several alternative sigma factors with more specialised roles that reprogrammed RNAP to recognise new sets of promoters and switch on distinct groups of genes. We have discovered an unorthodox transcription factor called RbpA that binds to the primary sigma factor and stimulates transcription initiation. We do not understand how RbpA stimulates transcription, but it does not bind DNA and so its mechanism is distinct from standard DNA-binding activators. RbpA homologues are only found in the actinomycete family of bacteria, which includes bacteria of industrial and medical significance, most notably the Streptomyces and Mycobacteria genera. The Streptomyces genus is the source of most clinically-used antibiotics and many chemotherapeutic agents. On the other hand the Mycobacterium genus includes the most important global bacterial pathogen, M. tuberculosis, which infects a third of the world's population and kills approaching 2 million humans per year. This proposal aims to develop our understanding of transcription initiation in actinomycetes and has important implications for 1) how antibiotic biosynthetic genes are transcribed and 2) the development of new drugs to inhibit mycobacterial RNAP, the target of the front-line TB antibiotic rifampicin. Our finding that RbpA binds to the primary sigma factor suggests that it plays a major role in transcription initiation, which is consistent with a dramatic slowing of growth rate when the protein is absent from the model Streptomyces strain S. coelicolor. In this project we will investigate how RbpA influences the activity of sigma by monitoring the localisation of sigma on chromosomal DNA in its presence or in its absence. We will also determine the structure of RbpA alone and when bound to sigma, which will allow us to build a model for how RbpA works in the context of the larger RNAP complex and might reveal new ways to inhibit it. Finally we will combine the structural models with new genetic and biochemical approaches to understand how RbpA activates transcription. The outcomes of the project will have wide ranging implications for how transcription initiates in actinomycetes and will be of interest to other researchers that are interested in finding new ways to inhibit RNA polymerase.
细菌具有巨大的经济和社会重要性,我们受益于它们合成有价值的产品(例如抗生素,生物燃料),保存食物和生物转化工业废物的能力,同时面临着与病原菌的持续斗争,这些病原菌进化出逃避当前治疗的方法。为了充分利用细菌用于工业过程,并应对新兴病原体所面临的挑战,我们需要了解细菌如何控制其基因的表达。基因表达始于一种称为RNA聚合酶的酶与位于蛋白质编码序列上游的DNA启动子元件的结合。RNA聚合酶(RNAP)在称为转录的过程中催化基因的RNA拷贝的产生,在大多数情况下,然后在蛋白质的产生中由核糖体翻译。转录起始的频率由调节蛋白控制,其中大多数与启动子区的DNA结合,通常也与RNAP相互作用。RNAP是一种多亚基复合物,由五个亚基的核心酶和一个可分离的第六个亚基组成,该亚基被称为sigma,是启动子结合和DNA解链以显示模板链所必需的。在转录起始后不久,在RNAP从启动子逃逸后,σ亚基解离。细菌通常含有多个σ因子,包括一个主要的σ因子,负责活跃生长细胞中的大部分转录,以及几个替代的σ因子,其具有更专门的作用,重新编程RNAP以识别新的启动子组并打开不同的基因组。我们已经发现了一个非正统的转录因子称为RbpA结合到主要的西格玛因子和刺激转录起始。我们不了解RbpA如何刺激转录,但它不结合DNA,因此其机制与标准的DNA结合激活剂不同。RbpA同系物仅在放线菌家族的细菌中发现,其包括具有工业和医学意义的细菌,最值得注意的是链霉菌属和分枝杆菌属。链霉菌属是大多数临床使用的抗生素和许多化学治疗剂的来源。另一方面,分枝杆菌属包括最重要的全球细菌病原体,M。结核病感染了世界三分之一的人口,每年造成近200万人死亡。该提案旨在发展我们对放线菌中转录起始的理解,并对1)抗生素生物合成基因如何转录和2)抑制分枝杆菌RNAP的新药开发具有重要意义,RNAP是一线TB抗生素利福平的靶标。我们发现RbpA与初级σ因子结合,这表明它在转录起始中起主要作用,这与当该蛋白质不存在于模型链霉菌菌株S中时生长速率的显著减慢一致。天蓝色。在这个项目中,我们将研究如何RbpA影响活动的西格玛通过监测本地化的西格玛染色体DNA在其存在或不存在。我们还将确定RbpA单独的结构和当结合到sigma时的结构,这将使我们能够建立RbpA如何在更大的RNAP复合物的背景下工作的模型,并可能揭示抑制它的新方法。最后,我们将联合收割机的结构模型与新的遗传和生物化学方法相结合,以了解RbpA如何激活转录。该项目的结果将对放线菌中转录如何启动产生广泛的影响,并将引起其他有兴趣寻找抑制RNA聚合酶新方法的研究人员的兴趣。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase.
- DOI:10.1093/nar/gkt277
- 发表时间:2013-06
- 期刊:
- 影响因子:14.9
- 作者:Tabib-Salazar A;Liu B;Doughty P;Lewis RA;Ghosh S;Parsy ML;Simpson PJ;O'Dwyer K;Matthews SJ;Paget MS
- 通讯作者:Paget MS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Paget其他文献
Mark Paget的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Paget', 18)}}的其他基金
Understanding and exploiting general transcription factors in the antibiotic-producing Streptomyces
了解和利用产生抗生素的链霉菌中的一般转录因子
- 批准号:
BB/P010385/1 - 财政年份:2017
- 资助金额:
$ 49.67万 - 项目类别:
Research Grant
Functional analysis of the RNA polymerase binding protein RbpA in Streptomyces coelicolor
天蓝色链霉菌RNA聚合酶结合蛋白RbpA的功能分析
- 批准号:
BB/D018293/1 - 财政年份:2006
- 资助金额:
$ 49.67万 - 项目类别:
Research Grant
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
Lagrange网络实用同步的不连续控制研究
- 批准号:61603174
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
- 批准号:81172643
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
- 批准号:81070069
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
- 批准号:10972233
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
- 批准号:30900646
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
相似海外基金
Randomized Phase II Trial of Prolonged Overnight Fasting and/or Exercise on Fatigue and Other Patient Reported Outcomes in Women with Hormone Receptor Positive Advanced Breast Cancer (FastER)
长期隔夜禁食和/或运动对激素受体阳性晚期乳腺癌女性患者疲劳和其他患者报告结果的随机 II 期试验 (FastER)
- 批准号:
10714371 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738134 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738133 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738132 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738135 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Supporting Treatment Adherence for Resilience and Thriving (START): A mHealth intervention to improve ART adherence for HIV-positive stimulant-using men
支持治疗依从性以促进复原力和繁荣 (START):一项移动医疗干预措施,旨在提高使用兴奋剂的 HIV 阳性男性的 ART 依从性
- 批准号:
10895784 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Supporting Treatment Adherence for Resilience and Thriving (START): A mHealth intervention to improve ART adherence for HIV-positive stimulant-using men
支持治疗依从性以促进复原力和繁荣 (START):一项移动医疗干预措施,旨在提高使用兴奋剂的 HIV 阳性男性的 ART 依从性
- 批准号:
10898254 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
The CHESS (Community, Home-based Education, Screening Services) Strategy to increase cervical cancer control access for HIV positive women in Nigeria
CHESS(社区、家庭教育、筛查服务)战略旨在增加尼日利亚艾滋病毒阳性妇女获得宫颈癌控制的机会
- 批准号:
10693963 - 财政年份:2022
- 资助金额:
$ 49.67万 - 项目类别:
The CHESS (Community, Home-based Education, Screening Services) Strategy to increase cervical cancer control access for HIV positive women in Nigeria
CHESS(社区、家庭教育、筛查服务)战略旨在增加尼日利亚艾滋病毒阳性妇女获得宫颈癌控制的机会
- 批准号:
10541349 - 财政年份:2022
- 资助金额:
$ 49.67万 - 项目类别:
Understanding the role of bilevel positive airway pressure (BPAP) in pediatric acute asthma exacerbations: A prospective, randomized, double blind, controlled trial.
了解双水平气道正压通气 (BPAP) 在小儿哮喘急性加重中的作用:一项前瞻性、随机、双盲对照试验。
- 批准号:
10448153 - 财政年份:2022
- 资助金额:
$ 49.67万 - 项目类别:














{{item.name}}会员




