How do cells shape and interpret PIP3 signals?

细胞如何塑造和解释 PIP3 信号?

基本信息

  • 批准号:
    BB/I003916/1
  • 负责人:
  • 金额:
    $ 138.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Multi-cellular organisms rely on a large array of different transmitter substances to allow certain cells to control the behavior of others. The more sophisticated the organism the more complex the cell to cell communication. In mammals this language probably involves hundreds of fundamentally different types of transmitter. Clearly such systems need a large collection of specialized receptor molecules that can detect the individual presence of any particular transmitter. Further, these receptors, typically found on the outer surface of the cell's limiting membrane, have to signal their specific stimulation by passing a molecular message into the cells interior, effectively informing the cell that the receptor has been activated. Clearly, if a cell has many different types of receptors on its surface the molecular signal generated inside the cell by each different receptor (often called an intracellular message) must identify and distinguish which specific receptor has been stimulated. Otherwise the cell could not discriminate between the transmitters present on the outside of the cell and could not respond correctly. Hence, mammalian cells have vastly complex intracellular signalling mechanisms continuously informing the cell of what is happening in other parts of the organism or its environment. One such intracellular signalling molecule or 'message' is PIP3. It is a phospholipid molecule found on the inside surface of the cell's limiting membrane. Levels of PIP3 rise rapidly on activation of a large number of receptors. This is surprising given the problems the cell faces in knowing precisely which receptor has been activated when it detects an intracellular signal. This grant application is to understand how it is possible that rises in PIP3 can encode specific messages from so many different receptors. We have performed some experiments that have, in fact, shown that PIP3 in cells is not a single type of molecule. At least four tiny variants of PIP3 can be detected, called molecular species of PIP3. Interestingly, we find that these different molecular species of PIP3 do not respond equivalently to different ways of activating the cells we work with. We and others have also found that the different receptors can make the levels of PIP3 rise for different times and to different maximum levels. We propose that these small differences are very important inside the cell for discriminating whether a certain receptor has been stimulated. This is a 'clever' economy or efficiency on the part of the cell and allows it to use similar mechanisms to perform many different jobs. Although on the surface these might appear trivial details in the business of understanding biology, it has recently been discovered that many different cancers are caused by mutations in genes that regulate PIP3 levels in cells. Mutations that by chance cause the production of PIP3 to be increased without any need for receptor stimulation make cancers much more likely to occur. Mutations that by chance stop the enzymes that normally break down PIP3 from working also make cancer more likely to occur. As a result it is clear that understanding how PIP3 is made and then interpreted by cells is crucial for us to better understand how cancer occurs and how to treat it. Many companies are already trying to design drugs that will reduce PIP3 levels to fight cancer. This work will help us understand how to make better drugs of that type.
多细胞生物体依靠大量不同的递质物质来允许某些细胞控制其他细胞的行为。生物体越复杂,细胞间的交流就越复杂。在哺乳动物中,这种语言可能涉及数百种根本不同类型的传递器。显然,这样的系统需要大量专门的受体分子来检测任何特定递质的单独存在。此外,这些受体通常位于细胞限制膜的外表面,必须通过将分子信息传递到细胞内部来发出特定刺激的信号,从而有效地通知细胞受体已被激活。显然,如果一个细胞表面有许多不同类型的受体,每个不同受体在细胞内产生的分子信号(通常被称为细胞内信息)必须识别和区分哪个特定的受体受到了刺激。否则,细胞不能区分细胞外部的发射器,也不能正确地作出反应。因此,哺乳动物细胞具有极其复杂的细胞内信号机制,不断地告知细胞在有机体的其他部分或其环境中正在发生的事情。PIP3就是一种这样的细胞内信号分子或“消息”。它是一种磷脂分子,位于细胞限制膜的内表面。随着大量受体的激活,PIP3水平迅速上升。考虑到细胞在检测到细胞内信号时准确知道哪个受体被激活所面临的问题,这是令人惊讶的。这项授权申请是为了了解PIP3中的RISS如何可能编码来自如此多不同受体的特定信息。事实上,我们已经进行了一些实验,表明细胞中的PIP3不是单一类型的分子。至少可以检测到四种PIP3的微小变体,称为PIP3的分子物种。有趣的是,我们发现这些不同的PIP3分子物种对激活我们工作的细胞的不同方式的反应并不相同。我们和其他人还发现,不同的受体可以使PIP3水平在不同的时间和不同的最高水平上升。我们认为,这些微小的差异在细胞内对于区分某个受体是否受到刺激非常重要。这是一个“聪明的”经济或效率的细胞部分,并允许它使用类似的机制来执行许多不同的工作。尽管从表面上看,这些在理解生物学的行业中似乎是微不足道的细节,但最近人们发现,许多不同的癌症是由调节细胞中PIP3水平的基因突变引起的。在不需要任何受体刺激的情况下,偶然导致PIP3产生增加的突变使癌症发生的可能性更大。意外地阻止正常情况下分解PIP3的酶发挥作用的突变也会使癌症更有可能发生。因此,很明显,了解PIP3是如何产生并被细胞解释的,对于我们更好地了解癌症是如何发生以及如何治疗至关重要。许多公司已经在尝试设计降低PIP3水平的药物来抗击癌症。这项工作将帮助我们了解如何制造更好的那种药物。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry.
  • DOI:
    10.1038/nmeth.1564
  • 发表时间:
    2011-03
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Clark, Jonathan;Anderson, Karen E.;Juvin, Veronique;Smith, Trevor S.;Karpe, Fredrik;Wakelam, Michael J. O.;Stephens, Len R.;Hawkins, Phillip T.
  • 通讯作者:
    Hawkins, Phillip T.
Signaling via class IA Phosphoinositide 3-kinases (PI3K) in human, breast-derived cell lines.
  • DOI:
    10.1371/journal.pone.0075045
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Juvin V;Malek M;Anderson KE;Dion C;Chessa T;Lecureuil C;Ferguson GJ;Cosulich S;Hawkins PT;Stephens LR
  • 通讯作者:
    Stephens LR
Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) is required to maintain physiological levels of PtdIns and PtdInsP(2) in the mouse.
  • DOI:
    10.1371/journal.pone.0058425
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Anderson KE;Kielkowska A;Durrant TN;Juvin V;Clark J;Stephens LR;Hawkins PT
  • 通讯作者:
    Hawkins PT
Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop.
  • DOI:
    10.1093/nar/gkv1015
  • 发表时间:
    2015-11-16
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Kiselev VY;Juvin V;Malek M;Luscombe N;Hawkins P;Le Novère N;Stephens L
  • 通讯作者:
    Stephens L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Len Stephens其他文献

PI3K signalling: the path to discovery and understanding
PI3K 信号传导:通往发现与理解的道路
  • DOI:
    10.1038/nrm3290
  • 发表时间:
    2012-02-23
  • 期刊:
  • 影响因子:
    90.200
  • 作者:
    Bart Vanhaesebroeck;Len Stephens;Phillip Hawkins
  • 通讯作者:
    Phillip Hawkins
Phosphoinositide acyl chain diversity: comparative analysis across species and mouse tissues
磷酸肌醇酰基链多样性:跨物种和小鼠组织的比较分析
  • DOI:
    10.1016/j.bbalip.2025.159640
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    David Barneda;Vishnu Janardan;John Swales;Maria Ciaccia;Richard Goodwin;Sabina Cosulich;Padinjat Raghu;Jonathan Clark;Len Stephens;Phillip Hawkins
  • 通讯作者:
    Phillip Hawkins
The synthetic lethal interaction between CDS1 and CDS2 is a vulnerability in uveal melanoma and across multiple tumor types
CDS1 和 CDS2 之间的合成致死相互作用是葡萄膜黑色素瘤以及多种肿瘤类型中的一个弱点
  • DOI:
    10.1038/s41588-025-02222-1
  • 发表时间:
    2025-07-04
  • 期刊:
  • 影响因子:
    29.000
  • 作者:
    Pui Ying Chan;Diana Alexander;Ishan Mehta;Larissa Satiko Alcantara Sekimoto Matsuyama;Victoria Harle;Rebeca Olvera-León;Jun Sung Park;Fernanda G. Arriaga-González;Louise van der Weyden;Saamin Cheema;Vivek Iyer;Victoria Offord;David Barneda;Phillip T. Hawkins;Len Stephens;Zuza Kozik;Michael Woods;Kim Wong;Gabriel Balmus;Alessandro Vinceti;Nicola A. Thompson;Martin Del Castillo Velasco-Herrera;Lodewyk Wessels;Joris van de Haar;Emanuel Gonçalves;Sanju Sinha;Martha Estefania Vázquez-Cruz;Luisa Bisceglia;Francesco Raimondi;Jyoti Choudhary;Sumeet Patiyal;Anjan Venkatesh;Francesco Iorio;Colm J. Ryan;David J. Adams
  • 通讯作者:
    David J. Adams
<strong>Tickling APCs</strong>The p84/p110 complex of PI3K regulates NOX2 assembly and cross-presentation of immune complexes
  • DOI:
    10.1016/j.molimm.2022.05.063
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aimé Cézaire Adiko;Marcelle Bens;Naman Tandon;Samira Benadda;Erwan Boedec;Olivier Pellé;Jamel El-Benna;Renato Monteiro;Muriel Laffargue;Len Stephens;Pierre Guermonprez;Loredana Saveanu
  • 通讯作者:
    Loredana Saveanu
PI3Ks in inflammation
  • DOI:
    10.1016/j.chemphyslip.2009.06.122
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Phillip Hawkins;Len Stephens
  • 通讯作者:
    Len Stephens

Len Stephens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Len Stephens', 18)}}的其他基金

MICA: The network of class I PI3K interacting proteins is dramatically rewired in a PTEN-/- mouse model of prostate cancer. What are the implications?
MICA:I 类 PI3K 相互作用蛋白网络在 PTEN-/- 前列腺癌小鼠模型中发生了显着的重新连接。
  • 批准号:
    MR/R000409/1
  • 财政年份:
    2018
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Research Grant
MICA: Is PI3Kgamma signalling organised in distinct membrane nano-domains?
MICA:PI3Kgamma 信号传导是否组织在不同的膜纳米域中?
  • 批准号:
    MR/K018167/1
  • 财政年份:
    2013
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Research Grant
A 3-D perspective on neutrophil migration
中性粒细胞迁移的 3D 视角
  • 批准号:
    BB/I008489/1
  • 财政年份:
    2011
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Research Grant
Regulation of the Ras cycle in neutrophils
中性粒细胞 Ras 循环的调节
  • 批准号:
    BB/D013593/1
  • 财政年份:
    2006
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Research Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How do unconventional T cells die?
非常规T细胞如何死亡?
  • 批准号:
    DP240101173
  • 财政年份:
    2024
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Discovery Projects
How do stem cells get specified during embryonic muscle development?
干细胞在胚胎肌肉发育过程中如何被指定?
  • 批准号:
    DP240101647
  • 财政年份:
    2024
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Discovery Projects
How do you build an astrocyte?
如何构建星形胶质细胞?
  • 批准号:
    10646059
  • 财政年份:
    2023
  • 资助金额:
    $ 138.44万
  • 项目类别:
How do animals learn the structure of their natural environment?
动物如何了解自然环境的结构?
  • 批准号:
    10685715
  • 财政年份:
    2023
  • 资助金额:
    $ 138.44万
  • 项目类别:
Hacking at the cellular level; How do viruses subvert intracellular networks for viral RNA genome trafficking within infected cells?
细胞水平的黑客攻击;
  • 批准号:
    2879796
  • 财政年份:
    2023
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Studentship
How do mammalian cells handle mRNA therapeutics: Optimising the molecular basis of manufacture
哺乳动物细胞如何处理 mRNA 疗法:优化制造的分子基础
  • 批准号:
    2903763
  • 财政年份:
    2023
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Studentship
X-ray and carbon ion therapy, how do they promote tumor-specific CD8+ cells?
X射线和碳离子疗法,它们如何促进肿瘤特异性CD8细胞?
  • 批准号:
    23K07097
  • 财政年份:
    2023
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How do cells survive nutrient stress? Insight into mechanisms.
细胞如何在营养压力下生存?
  • 批准号:
    DP220103531
  • 财政年份:
    2022
  • 资助金额:
    $ 138.44万
  • 项目类别:
    Discovery Projects
How do glia remodel the nervous system?
神经胶质细胞如何重塑神经系统?
  • 批准号:
    10608973
  • 财政年份:
    2022
  • 资助金额:
    $ 138.44万
  • 项目类别:
How do Olfactory Reserve Stem Cells Differentiate into Neuronal Cells? – A Combined in vitro/in vivo Approach
嗅觉储备干细胞如何分化为神经元细胞?
  • 批准号:
    504647467
  • 财政年份:
    2022
  • 资助金额:
    $ 138.44万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了