A 3-D perspective on neutrophil migration

中性粒细胞迁移的 3D 视角

基本信息

  • 批准号:
    BB/I008489/1
  • 负责人:
  • 金额:
    $ 65.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Chemotaxis is the process by which cells can navigate towards sources of chemoattractant. It is crucial for development, immune function and the spread of cancer cells. It is based on the ability of cells to detect chemoattractants via highly specific receptors on their surface. Remarkably, when placed near to a source of chemottractant the cell can determine the direction towards its source. It achieves this by using both the fact that the attractant becomes more concentrated nearer the source and its ability to detect tiny differences in the concentration of chemoattractant around it. The cell then migrates in the direction of increasing concentration of chemottractant. Despite its importance our understanding of how chemotaxis works is very limited. It is clear that chemotaxis is made up of many component, or sub, responses. The ability to detect the chemottractant, the ability to sense changes in its concentration across very small distances and the ability to move in response to the chemoattractant (chemokinesis), which is in turn dependent on the ability of the cells to form reversible contacts with neighbouring cells or surfaces. A full understanding of chemotaxis will only emerge from an understanding of these elemental component responses. In this project we focus on the mechanisms underpinning chemokinesis (chemoattractant stimulated movement, in our assays the chemottractants are often uniform in concentration and the resulting migration is random and not directed as in chemotaxis) as a key event in chemotaxis. We aim to understand the chemical nature (the molecules that are acting as the signals) and spatial organisation of the processes inside cells that allow them to perform these responses. Neutrophils are a specialised form of white cell found in the blood. Their primary function is to ingest and kill bacterial and fungal pathogens. Neutrophils use the process of chemotaxis to migrate out of the blood stream towards areas of inflammation and also to home-in on pathogens. Thus chemotaxis is essential for neutrophils to perform their normal healthy function fighting disease. However, many long term inflammatory diseases are known to caused by neutrophils over-reacting. Too many neutrophils accumulate at the site of disease and actually contribute to host tissue damage, which in-turn leads to further accumulation of neutrophils. Hence a major objective in treating inflammatory disease such as arthritis is to reduce neutrophil migration into sites of inflammation. At the moment we have very few drugs that are able to effectively reduce neutrophil influx to sites of chronic inflammation with unwanted side effects because we do not know which steps in chemotaxis to best target. We aim to study neutrophil chemokinesis and chemotaxis. Recently there has been huge progress in understanding the events inside neutrophils that are involved in coordinating chemotaxis. This has been possible through the development of microscopes capable of seeing inside living neutrophils as they move and the use of genetic engineering techniques to make specific proteins we want to study inside cells fluorescent and hence possible to see with special illumination and detection systems in the microscopes. However, despite these advances our views of the inside of cells during chemotaxis has thus far been very 2-dimensional, that is as if we were looking down on them from above, and could not reveal any depth (the 'sides' of the cell). By using new imaging techniques we are able to begin to take many photos and combine them to give a sense of depth. What we have seen so far entirely changes our interpretation of the 2-D images and understanding of the spatial coordination of chemotaxis. In this project we hope to use mathematics and computers to improve our ability to create and interprete 3-D images of migrating neutrophils and to use this to find out the nature of the intracellular signals that regulate chemokinesis and chemotaxis.
趋化性是细胞可以向化学引诱物的来源导航的过程。它对发育,免疫功能和癌细胞的扩散至关重要。它基于细胞通过其表面上的高度特异性受体检测化学引诱物的能力。值得注意的是,当放置在趋化剂来源附近时,细胞可以确定朝向其来源的方向。它利用引诱剂在靠近源的地方变得更集中的事实和它检测周围化学引诱剂浓度的微小差异的能力来实现这一点,然后细胞朝着化学引诱剂浓度增加的方向迁移。尽管它的重要性,我们的了解如何趋化性工程是非常有限的。很明显,趋化性是由许多组分或子反应组成的。检测趋化因子的能力,在非常小的距离内感知其浓度变化的能力,以及响应于趋化因子而移动的能力(化学运动),这又取决于细胞与相邻细胞或表面形成可逆接触的能力。对趋化性的全面理解只能从对这些元素成分反应的理解中产生。在这个项目中,我们专注于化学运动(化学引诱物刺激的运动,在我们的测定中,化学引诱物的浓度通常是均匀的,所产生的迁移是随机的,而不是像趋化性那样定向的)作为趋化性中的关键事件的机制。我们的目标是了解细胞内过程的化学本质(充当信号的分子)和空间组织,使它们能够执行这些反应。中性粒细胞是血液中发现的一种特殊形式的白色细胞。它们的主要功能是摄取和杀死细菌和真菌病原体。中性粒细胞利用趋化性过程从血流中迁移到炎症区域,并归巢病原体。因此,趋化性对于中性粒细胞发挥正常健康功能对抗疾病至关重要。然而,已知许多长期炎性疾病是由中性粒细胞过度反应引起的。太多的中性粒细胞在疾病部位积聚,实际上有助于宿主组织损伤,这反过来又导致中性粒细胞的进一步积聚。因此,治疗炎性疾病如关节炎的主要目的是减少中性粒细胞向炎症部位的迁移。目前,我们很少有药物能够有效地减少中性粒细胞流入慢性炎症部位,并产生不必要的副作用,因为我们不知道趋化性中的哪些步骤是最佳靶点。我们的目的是研究中性粒细胞的趋化作用和趋化性。最近,在了解中性粒细胞内参与协调趋化性的事件方面取得了巨大进展。这是可能的,通过显微镜的发展,能够看到内部活的中性粒细胞,因为他们移动和使用基因工程技术,使特定的蛋白质,我们想研究细胞内的荧光,因此可以看到特殊的照明和检测系统在显微镜。然而,尽管有这些进步,我们在趋化过程中对细胞内部的观察到目前为止还是非常二维的,就好像我们从上面向下看它们一样,不能揭示任何深度(细胞的“侧面”)。通过使用新的成像技术,我们能够开始拍摄许多照片,并将它们联合收割机组合起来,给人一种深度感。到目前为止,我们所看到的完全改变了我们对二维图像的解释和对趋化性空间协调的理解。在这个项目中,我们希望利用数学和计算机来提高我们创建和重建迁移中性粒细胞的3D图像的能力,并利用它来找出调节趋化作用和趋化性的细胞内信号的本质。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phosphoinositide 3-OH kinase regulates integrin-dependent processes in neutrophils by signaling through its effector ARAP3.
  • DOI:
    10.4049/jimmunol.1201330
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gambardella L;Anderson KE;Jakus Z;Kovács M;Voigt S;Hawkins PT;Stephens L;Mócsai A;Vermeren S
  • 通讯作者:
    Vermeren S
3D time series analysis of cell shape using Laplacian approaches.
  • DOI:
    10.1186/1471-2105-14-296
  • 发表时间:
    2013-10-04
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Du CJ;Hawkins PT;Stephens LR;Bretschneider T
  • 通讯作者:
    Bretschneider T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Len Stephens其他文献

PI3K signalling: the path to discovery and understanding
PI3K 信号传导:通往发现与理解的道路
  • DOI:
    10.1038/nrm3290
  • 发表时间:
    2012-02-23
  • 期刊:
  • 影响因子:
    90.200
  • 作者:
    Bart Vanhaesebroeck;Len Stephens;Phillip Hawkins
  • 通讯作者:
    Phillip Hawkins
Phosphoinositide acyl chain diversity: comparative analysis across species and mouse tissues
磷酸肌醇酰基链多样性:跨物种和小鼠组织的比较分析
  • DOI:
    10.1016/j.bbalip.2025.159640
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    David Barneda;Vishnu Janardan;John Swales;Maria Ciaccia;Richard Goodwin;Sabina Cosulich;Padinjat Raghu;Jonathan Clark;Len Stephens;Phillip Hawkins
  • 通讯作者:
    Phillip Hawkins
The synthetic lethal interaction between CDS1 and CDS2 is a vulnerability in uveal melanoma and across multiple tumor types
CDS1 和 CDS2 之间的合成致死相互作用是葡萄膜黑色素瘤以及多种肿瘤类型中的一个弱点
  • DOI:
    10.1038/s41588-025-02222-1
  • 发表时间:
    2025-07-04
  • 期刊:
  • 影响因子:
    29.000
  • 作者:
    Pui Ying Chan;Diana Alexander;Ishan Mehta;Larissa Satiko Alcantara Sekimoto Matsuyama;Victoria Harle;Rebeca Olvera-León;Jun Sung Park;Fernanda G. Arriaga-González;Louise van der Weyden;Saamin Cheema;Vivek Iyer;Victoria Offord;David Barneda;Phillip T. Hawkins;Len Stephens;Zuza Kozik;Michael Woods;Kim Wong;Gabriel Balmus;Alessandro Vinceti;Nicola A. Thompson;Martin Del Castillo Velasco-Herrera;Lodewyk Wessels;Joris van de Haar;Emanuel Gonçalves;Sanju Sinha;Martha Estefania Vázquez-Cruz;Luisa Bisceglia;Francesco Raimondi;Jyoti Choudhary;Sumeet Patiyal;Anjan Venkatesh;Francesco Iorio;Colm J. Ryan;David J. Adams
  • 通讯作者:
    David J. Adams
<strong>Tickling APCs</strong>The p84/p110 complex of PI3K regulates NOX2 assembly and cross-presentation of immune complexes
  • DOI:
    10.1016/j.molimm.2022.05.063
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aimé Cézaire Adiko;Marcelle Bens;Naman Tandon;Samira Benadda;Erwan Boedec;Olivier Pellé;Jamel El-Benna;Renato Monteiro;Muriel Laffargue;Len Stephens;Pierre Guermonprez;Loredana Saveanu
  • 通讯作者:
    Loredana Saveanu
PI3Ks in inflammation
  • DOI:
    10.1016/j.chemphyslip.2009.06.122
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Phillip Hawkins;Len Stephens
  • 通讯作者:
    Len Stephens

Len Stephens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Len Stephens', 18)}}的其他基金

MICA: The network of class I PI3K interacting proteins is dramatically rewired in a PTEN-/- mouse model of prostate cancer. What are the implications?
MICA:I 类 PI3K 相互作用蛋白网络在 PTEN-/- 前列腺癌小鼠模型中发生了显着的重新连接。
  • 批准号:
    MR/R000409/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65.87万
  • 项目类别:
    Research Grant
MICA: Is PI3Kgamma signalling organised in distinct membrane nano-domains?
MICA:PI3Kgamma 信号传导是否组织在不同的膜纳米域中?
  • 批准号:
    MR/K018167/1
  • 财政年份:
    2013
  • 资助金额:
    $ 65.87万
  • 项目类别:
    Research Grant
How do cells shape and interpret PIP3 signals?
细胞如何塑造和解释 PIP3 信号?
  • 批准号:
    BB/I003916/1
  • 财政年份:
    2011
  • 资助金额:
    $ 65.87万
  • 项目类别:
    Research Grant
Regulation of the Ras cycle in neutrophils
中性粒细胞 Ras 循环的调节
  • 批准号:
    BB/D013593/1
  • 财政年份:
    2006
  • 资助金额:
    $ 65.87万
  • 项目类别:
    Research Grant

相似国自然基金

骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
IFITM1+ IL1RAP+ neutrophil通过调控巨噬细胞表型转换驱动ALPPS肝再生的机制研究
  • 批准号:
    82370624
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于Neutrophil-DCs-naive T细胞轴研究“脱敏定喘汤”调体治疗中性粒细胞型过敏性哮喘的机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
  • 批准号:
    10736927
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
The Impact of SARS-CoV-2 Immune Dysregulation on Antifungal Immunity
SARS-CoV-2 免疫失调对抗真菌免疫的影响
  • 批准号:
    10658355
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
NETs as therapeutic targets in obstetric APS
NETs 作为产科 APS 的治疗靶点
  • 批准号:
    10786977
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
Synthetic circuits for therapeutic platelet production and immunomodulation
用于治疗性血小板生成和免疫调节的合成回路
  • 批准号:
    10745237
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
Inhibition of Fgr Prevents Pulmonary Fibrosis
抑制 Fgr 可预防肺纤维化
  • 批准号:
    10901018
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
Mechanisms of lung and cardiac pathology in SARS-CoV-2 infections
SARS-CoV-2 感染中的肺和心脏病病理机制
  • 批准号:
    10649990
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
Defining the Spatiotemporal Underpinnings of Neutrophil Recruitment, Microvascular Flow, and Oxygenation in Ischemic Stroke
定义缺血性中风中中性粒细胞募集、微血管血流和氧合的时空基础
  • 批准号:
    10449713
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
Reciprocal brain-lung responses in post-stroke pneumonia
中风后肺炎的脑肺交互反应
  • 批准号:
    10754060
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
  • 批准号:
    10606952
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
IL17 dependent angiocrine signaling drives inflammation in alcohol associated hepatitis
IL17 依赖性血管分泌信号传导驱动酒精相关性肝炎的炎症
  • 批准号:
    10837927
  • 财政年份:
    2023
  • 资助金额:
    $ 65.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了