A toolbox for the promotion of healthy ageing: Phenotypic prediction from genes and environment
促进健康老龄化的工具箱:基因和环境的表型预测
基本信息
- 批准号:BB/I014144/1
- 负责人:
- 金额:$ 64.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many different factors influence the health of individuals, be they domestic animals or humans. These factors can broadly be categorised as either genetic or environmental. Thus the genes inherited from parents and the environments encountered during life are paramount in determining health status as one ages. These factors may also interact, such that individuals with one genetic make-up may react well to a particular environment, whereas a different genetic make-up may react badly. Where a substantial proportion of the genetic and environmental factors can be identified it is possible to provide accurate predictions of individuals' health as they age. Using such genetic information in prediction has great potential as it can be measured early in life and is unchanging throughout life. So there is the potential to be aware in advance of the environmental conditions that will optimise the future health of individuals. Such prediction is potentially a powerful tool to promote healthy ageing and wellbeing in both humans and companion animals, as it allows increasing efficiency of interventions, such as recommended diets or even drug treatments, and the targeting interventions towards those individuals who will most benefit. Combining genetic and environmental information is therefore the natural way to proceed when predicting how animals or humans will age and this project is concerned with developing accurate mathematical and statistical models to do this. Research in animals and humans has started the process of identifying genes affecting the traits associated with healthy ageing such as obesity or bone strength. However it has become clear that traits associated with healthy ageing are generally controlled by large numbers of genes with small effects. To unequivocally find such genes and accurately estimate their effects requires very large studies and relatively few genes have as yet been identified. Thus the amount of variation explained jointly by all the genes found in studies so far is usually much less than 10%, even though genetic variation in total may explain as much as 80% of the overall variation. Alongside genetic information, factors such as age, gender, diet and other lifestyle characteristics are often major contributors to how individuals develop. In addition, it is often known that metabolic or predisposing traits like glucose or lipid concentration in blood may correlate with health. Such traits may be more amenable to measurement or may be measured earlier than overall health status and may be used as indicators or predictors of future health. Thus information can also be combined across traits to improve the accuracy of prediction, and to allow prediction of (unmeasured) correlated traits. With this background we propose to develop mathematical methods which make best use of available genomic information and to combine this information with environmental data and across multiple traits. We will use several different approaches and compare them in their ability to accurately predict performance and how they may be extended to account for data from many traits and environments. We plan to apply and extend methods currently used in animal breeding for the related task of identifying genetically superior animals for breeding. These will be compared with machine learning methods from computer science. We plan to demonstrate the effectiveness of these methods applied to the analysis of data from human populations on body mass index - a proxy for obesity - and blood glucose levels, and will also include in the analyses environmental variables like smoking, diet and exercise. The data are currently available from human studies and methods and results will be relevant to this species. In due course, the methods developed will be directly applicable to companion animals as data become available.
许多不同的因素影响着个体的健康,无论是家畜还是人。这些因素大致可分为遗传因素和环境因素。因此,从父母那里遗传的基因和一生中遇到的环境在决定一个人年龄的健康状况方面是至关重要的。这些因素也可能相互作用,例如,具有一种基因构成的个体可能对特定环境反应良好,而具有不同基因构成的个体可能反应不良。在能够确定很大一部分遗传和环境因素的情况下,就有可能准确预测个人随着年龄增长的健康状况。利用这种遗传信息进行预测具有巨大的潜力,因为它可以在生命早期进行测量,并且在整个生命过程中保持不变。因此,有可能提前意识到环境条件,这将优化个人未来的健康。这种预测可能是促进人类和伴侣动物健康老龄化和福祉的有力工具,因为它可以提高干预措施的效率,例如推荐饮食甚至药物治疗,并针对那些最受益的个体进行有针对性的干预。因此,在预测动物或人类将如何衰老时,结合遗传和环境信息是一种自然的方式,而这个项目涉及开发准确的数学和统计模型来做到这一点。对动物和人类的研究已经开始识别影响与健康衰老相关的特征(如肥胖或骨骼强度)的基因。然而,很明显,与健康衰老相关的特征通常是由大量基因控制的,影响很小。要明确地找到这些基因并准确地估计它们的影响,需要进行非常大规模的研究,而迄今为止已确定的基因相对较少。因此,迄今为止研究中发现的所有基因共同解释的变异量通常远低于10%,尽管总的遗传变异可以解释多达80%的总体变异。除了遗传信息,年龄、性别、饮食和其他生活方式特征等因素往往是影响个体发育的主要因素。此外,人们通常知道代谢或易感特征,如血液中的葡萄糖或脂质浓度可能与健康有关。这些特征可能更易于测量,或者可以比总体健康状况更早测量,并且可以用作未来健康的指标或预测因素。因此,信息也可以跨性状组合,以提高预测的准确性,并允许预测(未测量的)相关性状。在此背景下,我们建议发展数学方法,以充分利用现有的基因组信息,并将这些信息与环境数据和多个性状相结合。我们将使用几种不同的方法,并比较它们准确预测性能的能力,以及它们如何扩展到解释来自许多特征和环境的数据。我们计划将目前在动物育种中使用的方法应用和扩展到鉴定遗传优良动物用于育种的相关任务。这些将与计算机科学中的机器学习方法进行比较。我们计划证明这些方法在分析人类体质指数(肥胖的代表)和血糖水平数据方面的有效性,并将吸烟、饮食和锻炼等环境变量纳入分析。目前从人类研究中获得的数据、方法和结果将与该物种相关。在适当的时候,当数据可用时,所开发的方法将直接适用于伴侣动物。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayes U: A genomic prediction method based on the Horseshoe prior
Bayes U:一种基于马蹄先验的基因组预测方法
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Pong-Wong, R
- 通讯作者:Pong-Wong, R
A comprehensive catalogue of regulatory variants in the cattle transcriptome
- DOI:10.1101/2020.12.01.406280
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Shuli Liu;Yahui Gao;O. Canela‐Xandri;Sheng Wang;Ying Yu;Wentao Cai;Bingjie Li;E. Pairo-Castineira;K. D'Mellow;K. Rawlik;Charley Xia;Yuelin Yao;Xiujin Li;Ze Yan;Congjun Li;B. Rosen;C. V. Van Tassell;P. Vanraden;Shengli Zhang;Li Ma;J. Cole;G. Liu;A. Tenesa;L. Fang
- 通讯作者:Shuli Liu;Yahui Gao;O. Canela‐Xandri;Sheng Wang;Ying Yu;Wentao Cai;Bingjie Li;E. Pairo-Castineira;K. D'Mellow;K. Rawlik;Charley Xia;Yuelin Yao;Xiujin Li;Ze Yan;Congjun Li;B. Rosen;C. V. Van Tassell;P. Vanraden;Shengli Zhang;Li Ma;J. Cole;G. Liu;A. Tenesa;L. Fang
Application of high-dimensional feature selection: evaluation for genomic prediction in man.
- DOI:10.1038/srep10312
- 发表时间:2015-05-19
- 期刊:
- 影响因子:4.6
- 作者:Bermingham ML;Pong-Wong R;Spiliopoulou A;Hayward C;Rudan I;Campbell H;Wright AF;Wilson JF;Agakov F;Navarro P;Haley CS
- 通讯作者:Haley CS
A comparison of body mass index and waist-hip ratio in the genomic prediction of obesity associated health risk.
体重指数和腰臀比在肥胖相关健康风险基因组预测中的比较。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Alcántara, M
- 通讯作者:Alcántara, M
Genomic prediction of health traits in humans: demonstrating the value of marker selection.
人类健康特征的基因组预测:证明标记选择的价值。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Bermingham, M
- 通讯作者:Bermingham, M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Haley其他文献
Analgesia for rib fractures: a narrative review
- DOI:
10.1007/s12630-024-02725-1 - 发表时间:
2024-03-08 - 期刊:
- 影响因子:3.300
- 作者:
Theunis van Zyl;Anthony M.-H. Ho;Gregory Klar;Christopher Haley;Adrienne K. Ho;Susan Vasily;Glenio B. Mizubuti - 通讯作者:
Glenio B. Mizubuti
Christopher Haley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Haley', 18)}}的其他基金
Locating the Missing Heritability of Complex Traits using Regional Haplotype Mapping
使用区域单倍型作图定位复杂性状的缺失遗传力
- 批准号:
BB/J002844/1 - 财政年份:2012
- 资助金额:
$ 64.76万 - 项目类别:
Research Grant
相似国自然基金
基于甲状旁腺素重塑腱骨止点微结构及促软骨和抑瘢痕的机制研究
- 批准号:82372132
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
'Build it so they will come.' Understanding lived experience to catalyze active transportation as a climate change intervention
“建造它,这样他们就会来。”
- 批准号:
485336 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Operating Grants
Multi-level intervention to promote healthy beverage choices among Navajo families
多层次干预促进纳瓦霍家庭选择健康饮料
- 批准号:
10776269 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Food-Body-Mind Intervention: Promote whole child health
食身心干预:促进儿童整体健康
- 批准号:
10731251 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Improving sleep and circadian functioning, daytime functioning, and well-being for midlife and older adults by improving patient memory for a transdiagnostic sleep and circadian treatment
通过改善患者对跨诊断睡眠和昼夜节律治疗的记忆,改善中年和老年人的睡眠和昼夜节律功能、日间功能和福祉
- 批准号:
10708424 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
The regulation of cancer and aging by methionine
蛋氨酸对癌症和衰老的调节
- 批准号:
10750559 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Biodiversification of nutrients to meet dietary needs of the UK population: prevention and control of Type 2 diabetes and promotion of a healthy gut
营养生物多样化以满足英国人口的饮食需求:预防和控制 2 型糖尿病并促进健康的肠道
- 批准号:
10072588 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Collaborative R&D
Personality and Mortality Risk in Adulthood: Behavioral and Physiological Mechanisms
成年期的人格和死亡风险:行为和生理机制
- 批准号:
10645631 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Circadian Pathways Linking Metabolic Homeostasis and Gene Regulation During Aging
连接衰老过程中代谢稳态和基因调控的昼夜节律途径
- 批准号:
10901043 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Re-orienting the food and nutrition surveillance system in Canada: a focus on impacts at the intersection of health, climate, and equity
重新定位加拿大的食品和营养监测系统:关注健康、气候和公平交叉点的影响
- 批准号:
491513 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别:
Fellowship Programs
Clinical and Translational Science Collaborative of Northern Ohio, Catalyzing Linkages to Equity in Health (CLE Health)
北俄亥俄州临床和转化科学合作组织,促进健康公平的联系 (CLE Health)
- 批准号:
10704417 - 财政年份:2023
- 资助金额:
$ 64.76万 - 项目类别: