Detecting cytosine methylation at the single DNA molecule level

在单个 DNA 分子水平检测胞嘧啶甲基化

基本信息

  • 批准号:
    BB/I022686/1
  • 负责人:
  • 金额:
    $ 7.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Although the genomes of many organisms (humans, plants, invertebrates and vertebrates) have been sequenced and many of the genes identified, our understanding of the regulation of the genes is limited due to lack of analysis technology. DNA is composed of four nucleic acid bases, adenine, guanine, cytosine and thymine. Some of these nucleic acid bases can be modified by enzymes and as a result have an additional methyl group; here we will investigate new technologies for the detection of methylcytosine and unmethylated cytosine within single DNA molecules. The methylation of cytosine nucleic acid bases is associated with gene silencing. In humans DNA methylation is considered to play a critical role in development and is aberrant in many diseases, but as yet the complete role remains unclear. There are numerous techniques for the detection of methylated cytosine in DNA, but the current methodologies do not yet provide a simple, fast, reliable cheap approach. A major problem is the need to evaluate DNA from cell samples that will contain the same DNA sequence but which are heterogeneous with respect to the cytosine residues that are methylated. So an average is often obtained. Those techniques that do allow single DNA strands to be evaluated are highly laborious and limited. Here we will develop a new approach for detecting sequences containing methylated cytosines at the single molecule level. There are currently other groups working in the field of DNA sequencing of single molecules, but these methods are slow and the DNA is investigated as a single strand. We will interrogate double-stranded DNA and this will allow us to detect methylated or unmethylated cytosine molecules on each strand, called hemi-methylation. Our approach is to create an artificial form of DNA, an oligonucleotide, that associates and wraps within the major groove of double-stranded DNA molecule at specific sequences. This artificial form of DNA when associated is called a triplex and the molecules synthesised will also contain a fluorophore. When the DNA sample has been treated with these triplex forming oligonucleotides the helix will contain fluorophores at different points along it. We will inject the DNA sample into a small channel that will result in unravelling and straightening of the strand so that it is then threaded into an optical interrogation channel. The fluorophores will be excited with light, which in the presence of nanostructures within the nanochannel will result in fluorescence intensity changes. The change in intensity will provide a code that indicates the methylation status of the different cytosine containing sequences (unmethylated, hemi-methylated, doubly methylated). A simple technique to detect the methylated and unmethylated cytosines within DNA sequences will be important for a wide academic, clinical and industrial research community, since this will allow a greater understanding of gene regulation. There are many research areas where cytosine methylation is considered to play a significant role in humans, such as diet related disease, inflammatory diseases, embryonic development to name a few, or in plants for understanding the effect of environmental stress. But as noted above, cytosine methylation is important for many organisms, and a technique that allows for the analysis of the patterns of methylation within genes has the potential to be commercially valuable in the longer-term. First a better understanding of DNA methylation is required, but it is possible that a form of the approach proposed here will yield a diagnostic tool.
虽然许多生物体(人类、植物、无脊椎动物和脊椎动物)的基因组已经测序,许多基因已经被鉴定,但由于缺乏分析技术,我们对基因调控的理解是有限的。DNA由四种核酸碱基组成,即腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶。这些核酸碱基中的一些可以被酶修饰,因此具有额外的甲基;在这里,我们将研究用于检测单个DNA分子内的甲基胞嘧啶和未甲基化胞嘧啶的新技术。胞嘧啶核酸碱基的甲基化与基因沉默有关。在人类中,DNA甲基化被认为在发育中起关键作用,并且在许多疾病中是异常的,但到目前为止,完整的作用仍然不清楚。DNA甲基化胞嘧啶的检测技术有很多种,但目前的方法学还没有提供一种简单、快速、可靠、廉价的方法。一个主要的问题是需要评估来自细胞样品的DNA,所述细胞样品将含有相同的DNA序列,但其相对于甲基化的胞嘧啶残基是异质的。因此,通常会得到平均值。那些确实允许评估单链DNA的技术是非常费力和有限的。在这里,我们将开发一种新的方法来检测序列含有甲基化胞嘧啶在单分子水平。目前,在单分子的DNA测序领域中有其他小组在工作,但是这些方法是缓慢的,并且DNA作为单链被研究。我们将询问双链DNA,这将使我们能够检测每条链上的甲基化或非甲基化胞嘧啶分子,称为半甲基化。我们的方法是创造一种人工形式的DNA,一种寡核苷酸,它在特定序列处结合并包裹在双链DNA分子的大沟内。这种人工形式的DNA在结合时被称为三链体,合成的分子也将包含荧光团。当DNA样品用这些形成三链体的寡核苷酸处理后,螺旋将在其沿着的不同点上含有荧光团。我们将DNA样品注入一个小通道,这将导致链的解开和拉直,然后将其穿入光学询问通道。荧光团将被光激发,这在纳米通道内存在纳米结构的情况下将导致荧光强度变化。强度的变化将提供指示不同含胞嘧啶序列的甲基化状态(未甲基化、半甲基化、双甲基化)的代码。检测DNA序列中甲基化和未甲基化胞嘧啶的简单技术对于广泛的学术、临床和工业研究社区将是重要的,因为这将使人们更好地理解基因调控。有许多研究领域认为胞嘧啶甲基化在人类中起着重要作用,例如饮食相关疾病,炎症性疾病,胚胎发育等,或在植物中理解环境胁迫的影响。但如上所述,胞嘧啶甲基化对许多生物体都很重要,并且允许分析基因内甲基化模式的技术具有长期商业价值的潜力。首先需要更好地理解DNA甲基化,但这里提出的方法可能会产生诊断工具。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.
  • DOI:
    10.1021/acs.nanolett.7b04283
  • 发表时间:
    2018-01-10
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chikkaraddy R;Turek VA;Kongsuwan N;Benz F;Carnegie C;van de Goor T;de Nijs B;Demetriadou A;Hess O;Keyser UF;Baumberg JJ
  • 通讯作者:
    Baumberg JJ
Watching individual molecules flex within lipid membranes using SERS.
  • DOI:
    10.1038/srep05940
  • 发表时间:
    2014-08-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Taylor RW;Benz F;Sigle DO;Bowman RW;Bao P;Roth JS;Heath GR;Evans SD;Baumberg JJ
  • 通讯作者:
    Baumberg JJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Baumberg其他文献

Plasmon-directed polymerization: Regulating polymer growth with light
等离子体定向聚合:用光调节聚合物生长
  • DOI:
    10.1007/s12274-018-2163-0
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Yunxia Wang;Shuangshuang Wang;Shunping Zhang;Oren Scherman;Jeremy Baumberg;Tao Ding;Hongxing Xu
  • 通讯作者:
    Hongxing Xu

Jeremy Baumberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Baumberg', 18)}}的其他基金

Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
  • 批准号:
    EP/Y036379/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Ubiquitous Optical Healthcare Technologies (ubOHT) Programme Grant
无处不在的光学医疗保健技术 (ubOHT) 计划拨款
  • 批准号:
    EP/X037770/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Open Lab Instrumentation
开放实验室仪器
  • 批准号:
    EP/P029426/1
  • 财政年份:
    2017
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics)
先进光子纳米材料的卷对卷自组装(R2R-4Photonics)
  • 批准号:
    EP/N016920/1
  • 财政年份:
    2016
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Nano-Optics to controlled Nano-Chemistry Programme Grant (NOtCH)
纳米光学受控纳米化学计划拨款 (NOtCH)
  • 批准号:
    EP/L027151/1
  • 财政年份:
    2014
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Programmable nano-assembly of plasmonic materials for molecular interactions
用于分子相互作用的等离子体材料的可编程纳米组装
  • 批准号:
    EP/K028510/1
  • 财政年份:
    2013
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Elastomeric Opals: Follow on Fund
弹性蛋白石:跟随基金
  • 批准号:
    EP/H027130/1
  • 财政年份:
    2010
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Cucurbitrils for Hardwired Optical and Electronic Self-assembly
用于硬连线光学和电子自组装的葫芦酯
  • 批准号:
    EP/H007024/1
  • 财政年份:
    2009
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Cambridge NanoScience through Engineering to Application Doctoral Training Centre: Assembly of Functional NanoMaterials and NanoDevices
剑桥纳米科学从工程到应用博士培训中心:功能纳米材料和纳米器件的组装
  • 批准号:
    EP/G037221/1
  • 财政年份:
    2009
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Training Grant
Soft NanoPhotonics Programme Grant (sNaP)
软纳米光子学计划补助金 (sNaP)
  • 批准号:
    EP/G060649/1
  • 财政年份:
    2009
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant

相似海外基金

Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
  • 批准号:
    10734403
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Somatic mutation rates in healthy aging
健康老龄化中的体细胞突变率
  • 批准号:
    10800911
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
TET2-mediated epitranscriptomic regulation in leukemia microenvironment
TET2介导的白血病微环境中的表观转录组调控
  • 批准号:
    10801348
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Alcohol-induced epigenetic reprogramming of PPAR-α affects allopregnanolone biosynthesis
酒精诱导的 PPAR-α 表观遗传重编程影响异孕酮生物合成
  • 批准号:
    10658534
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Sequencing the Mono-Methylated Derivatives of Cytidine
胞苷单甲基化衍生物的测序
  • 批准号:
    10581093
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Effect of dietary restriction on intestinal stem cell aging
饮食限制对肠道干细胞衰老的影响
  • 批准号:
    10823900
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Aerosolized Epigenetic Therapy for Metastatic Lung Cancer
雾化表观遗传疗法治疗转移性肺癌
  • 批准号:
    10760630
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Molecular Mechanism of TET-mediated Gene Regulation
TET介导的基因调控的分子机制
  • 批准号:
    10714155
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Endocrine Disrupting Chemicals and Male-biased Neurobehavioral Disorders
内分泌干​​扰化学物质和男性神经行为障碍
  • 批准号:
    10561338
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Mutual reinforcement between somatic mutations and transcription factors in clonal hematopoiesis
克隆造血中体细胞突变和转录因子之间的相互强化
  • 批准号:
    10601791
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了