Nano-Optics to controlled Nano-Chemistry Programme Grant (NOtCH)
纳米光学受控纳米化学计划拨款 (NOtCH)
基本信息
- 批准号:EP/L027151/1
- 负责人:
- 金额:$ 591.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We can use intricately controlled assemblies of metals carved into structures on the scale of a billionth of a metre, to funnel and concentrate light into tiny volumes of space. This 'nano-optics' allows us to access for the first time small numbers of molecules and atoms moving around in real time. Even more interesting we can start to use light to control the movement of molecules and atoms, since it can produce strong forces directly at the nanoscale.In this research, we plan to use our new-found ability to concentrate on a whole range of physical phenomena that underlie devices at the heart of healthcare, information technology, and energy production. For instance we can watch how lithium ions move into and out of a small fragment of battery, and how the deformations of the atomic lattice are produced, which is what determines how long batteries last and how much energy they can store. Another project uses light to move gold atoms around inside larger carbon-based molecules, to control what colour they absorb at, and what molecules they can sense. Further projects build wallpapers constructed from tiny flipping components that produce colour changes on demand, the precursor to walls that change colour at the flick of a switch or display images or text on the side of lorries.Underpinning all this are serious advances in learning how to build such structures reliably, so anyone can make use of our new ideas. We understand very little about what happens when we put molecules inside such compressed nano-cavities for light, and these fundamentals will open up new areas. This research also crucially helps us understand what new properties we can create, and predicts how to improve them best. This will lay open many of the new technologies of the next century.
我们可以使用复杂控制的金属组件雕刻成十亿分之一米的结构,将光线集中到微小的空间中。这种“纳米光学”使我们能够第一次接触到少量的分子和原子在真实的时间内运动。更有趣的是,我们可以开始使用光来控制分子和原子的运动,因为它可以直接在纳米尺度上产生强大的力。在这项研究中,我们计划利用我们新发现的能力来集中研究医疗保健、信息技术和能源生产核心设备的一系列物理现象。例如,我们可以观察锂离子如何进出电池的一小块碎片,以及原子晶格的变形是如何产生的,这决定了电池的寿命和它们可以存储多少能量。另一个项目利用光来移动较大的碳基分子内部的金原子,以控制它们吸收的颜色以及它们可以感知的分子。进一步的项目是用微小的翻转组件制作壁纸,这些组件可以根据需要产生颜色变化,这是轻按开关就能变色或在卡车侧面显示图像或文字的墙壁的前身。所有这些都是在学习如何可靠地构建这种结构方面取得的重大进展,所以任何人都可以利用我们的新想法。当我们将分子放入这种压缩的纳米腔中时,我们对发生的事情知之甚少,这些基本原理将开辟新的领域。这项研究还至关重要地帮助我们了解我们可以创造什么样的新特性,并预测如何最好地改进它们。这将为下个世纪的许多新技术奠定基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets
溶液处理的堆叠钙钛矿半导体片中的二维激子产生强光电流
- DOI:10.17863/cam.8783
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Ahmad S
- 通讯作者:Ahmad S
Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets.
- DOI:10.1021/acsami.5b07026
- 发表时间:2015-11-18
- 期刊:
- 影响因子:9.5
- 作者:Ahmad S;Kanaujia PK;Beeson HJ;Abate A;Deschler F;Credgington D;Steiner U;Prakash GV;Baumberg JJ
- 通讯作者:Baumberg JJ
Mark Stockman: Evangelist for Plasmonics
- DOI:10.1021/acsphotonics.1c00299
- 发表时间:2021-03
- 期刊:
- 影响因子:7
- 作者:J. Aizpurua;H. Atwater;J. Baumberg;S. Bozhevolnyi;M. Brongersma;J. Dionne;H. Giessen;N. Halas;Y. Kivshar;M. Kling;F. Krausz;Stefan A. Maier;S. Makarov;M. Mikkelsen;M. Moskovits;P. Norlander;Teri W. Odom;A. Polman;Cheng-wei Qiu;M. Segev;V. Shalaev;P. Törmä;D. Tsai;E. Verhagen;A. Zayats;Xiang Zhang;N. Zheludev
- 通讯作者:J. Aizpurua;H. Atwater;J. Baumberg;S. Bozhevolnyi;M. Brongersma;J. Dionne;H. Giessen;N. Halas;Y. Kivshar;M. Kling;F. Krausz;Stefan A. Maier;S. Makarov;M. Mikkelsen;M. Moskovits;P. Norlander;Teri W. Odom;A. Polman;Cheng-wei Qiu;M. Segev;V. Shalaev;P. Törmä;D. Tsai;E. Verhagen;A. Zayats;Xiang Zhang;N. Zheludev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Baumberg其他文献
Plasmon-directed polymerization: Regulating polymer growth with light
等离子体定向聚合:用光调节聚合物生长
- DOI:
10.1007/s12274-018-2163-0 - 发表时间:
2018-08 - 期刊:
- 影响因子:9.9
- 作者:
Yunxia Wang;Shuangshuang Wang;Shunping Zhang;Oren Scherman;Jeremy Baumberg;Tao Ding;Hongxing Xu - 通讯作者:
Hongxing Xu
Jeremy Baumberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Baumberg', 18)}}的其他基金
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
- 批准号:
EP/Y036379/1 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Ubiquitous Optical Healthcare Technologies (ubOHT) Programme Grant
无处不在的光学医疗保健技术 (ubOHT) 计划拨款
- 批准号:
EP/X037770/1 - 财政年份:2023
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics)
先进光子纳米材料的卷对卷自组装(R2R-4Photonics)
- 批准号:
EP/N016920/1 - 财政年份:2016
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Programmable nano-assembly of plasmonic materials for molecular interactions
用于分子相互作用的等离子体材料的可编程纳米组装
- 批准号:
EP/K028510/1 - 财政年份:2013
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Detecting cytosine methylation at the single DNA molecule level
在单个 DNA 分子水平检测胞嘧啶甲基化
- 批准号:
BB/I022686/1 - 财政年份:2012
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Elastomeric Opals: Follow on Fund
弹性蛋白石:跟随基金
- 批准号:
EP/H027130/1 - 财政年份:2010
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Cucurbitrils for Hardwired Optical and Electronic Self-assembly
用于硬连线光学和电子自组装的葫芦酯
- 批准号:
EP/H007024/1 - 财政年份:2009
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
Cambridge NanoScience through Engineering to Application Doctoral Training Centre: Assembly of Functional NanoMaterials and NanoDevices
剑桥纳米科学从工程到应用博士培训中心:功能纳米材料和纳米器件的组装
- 批准号:
EP/G037221/1 - 财政年份:2009
- 资助金额:
$ 591.85万 - 项目类别:
Training Grant
Soft NanoPhotonics Programme Grant (sNaP)
软纳米光子学计划补助金 (sNaP)
- 批准号:
EP/G060649/1 - 财政年份:2009
- 资助金额:
$ 591.85万 - 项目类别:
Research Grant
相似国自然基金
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Fellowship
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
- 批准号:
2309086 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Investigation of Stress Induced Birefringence and Refractive Index Changes in Glass for Fabricating Novel Optics
RII Track-4:NSF:用于制造新型光学器件的玻璃中应力引起的双折射和折射率变化的研究
- 批准号:
2327218 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Standard Grant
Adaptive Optics for Advanced Gravitational Wave Detectors
用于先进引力波探测器的自适应光学器件
- 批准号:
LE230100122 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Probing Solar Axions with X-ray Optics for BabyIAXO
使用 BabyIAXO 的 X 射线光学器件探测太阳轴子
- 批准号:
2309980 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Standard Grant
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
- 批准号:
2309087 - 财政年份:2024
- 资助金额:
$ 591.85万 - 项目类别:
Continuing Grant
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
- 批准号:
23H01987 - 财政年份:2023
- 资助金额:
$ 591.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Adaptive Optics for Ophthalmic Imaging
用于眼科成像的自适应光学
- 批准号:
2877426 - 财政年份:2023
- 资助金额:
$ 591.85万 - 项目类别:
Studentship
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
$ 591.85万 - 项目类别:
Standard Grant