Soft NanoPhotonics Programme Grant (sNaP)
软纳米光子学计划补助金 (sNaP)
基本信息
- 批准号:EP/G060649/1
- 负责人:
- 金额:$ 447.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Visible light can be made to interact with new solids in unusual and profoundly different ways to normal if the solids are built from tiny components assembled together in intricately ordered structures. This hugely expanding research area is motivated by many potential benefits (which are part of our research programme) including enhanced solar cells which are thin, flexible and cheap, or surfaces which help to identify in detail any molecules travelling over them. This combination of light and nanoscale matter is termed NanoPhotonics.Until now, most research on NanoPhotonics has concentrated on the extremely difficult challenge of carving up metals and insulators into small chunks which are arranged in patterns on the nanometre scale. Much of the effort uses traditional fabrication methods, most of which borrow techniques from those used in building the mass-market electronics we all use, which is based on perfectly flat slabs of silicon. Such fabrication is not well suited to three-dimensional architectures of the sizes and materials needed for NanoPhotonics applications, and particularly not if large-scale mass-production of materials is required.Our aim in this programme is to bring together a number of specialists who have unique expertise in manipulating and constructing nanostructures out of soft materials, often organic or plastic, to make Soft NanoPhotonics devices which can be cheap, and flexible. In the natural world, many intricate architectures are designed for optical effects and we are learning from them some of their tricks, such as irridescent petal colours for bee attraction, or scattering particular colours of light from butterfly wings to scare predators. Here we need to put together metal and organics into sophisticated structures which give novel and unusual optical properties for a whole variety of applications.There are a number of significant advantages from our approach. Harnessing self-assembly of components is possible where the structures just make themselves , sometimes with a little prodding by setting up the right environment. We can also make large scale manufacturing possible using our approach (and have considerable experience of this), which leads to low costs for production. Also this approach allows us to make structures which are completely impossible using normal techniques, with smaller nanoscale features and highly-interconnected 3D architectures. Our structures can be made flexible, and we can also exploit the plastics to create devices whose properties can be tuned, for instance by changing the colour of a fibre when an electrical voltage is applied, or they are stretched or exposed to a chemical. More novel ideas such as electromagnetic cloaking (stretching light to pass around an object which thus remains invisible) are also only realistic using the sort of 3D materials we propose.The aim of this grant is bring together a set of leading researchers with the clear challenge to combine our expertise to create a world-leading centre in Soft NanoPhotonics. This area is only just emerging, and we retain an internationally-competitive edge which will allow us to open up a wide range of both science and application. The flexibility inherent in this progamme grant would allow us to continue the rapid pace of our research, responding to the new opportunities emerging in this rapidly progressing field.
可见光可以与新的固体以不寻常的和完全不同的方式相互作用,如果固体是由复杂有序的结构中的微小组件组装在一起的话。这个巨大的扩展研究领域的动机是许多潜在的好处(这是我们研究计划的一部分),包括增强的太阳能电池,薄,灵活和便宜,或表面,有助于详细识别任何分子在他们身上旅行。这种光和纳米级物质的结合被称为纳米光子学。到目前为止,大多数关于纳米光子学的研究都集中在将金属和绝缘体切割成纳米级图案的小块这一极其困难的挑战上。大部分的努力使用传统的制造方法,其中大部分借鉴了那些用于制造我们都使用的大众市场电子产品的技术,这些技术基于完美的平板硅。这种制造并不适合纳米光子学应用所需的尺寸和材料的三维结构,特别是如果需要大规模批量生产材料。我们在这个计划中的目标是汇集一些专家谁拥有独特的专业知识,在操纵和构建纳米结构的软材料,通常是有机或塑料,使软纳米光子器件,可以是便宜的,并且灵活。在自然界中,许多复杂的建筑都是为光学效果而设计的,我们正在学习他们的一些技巧,例如吸引蜜蜂的彩虹花瓣颜色,或者从蝴蝶翅膀上散射特定颜色的光来吓唬捕食者。在这里,我们需要将金属和有机物组合成复杂的结构,为各种应用提供新颖和不寻常的光学特性。利用组件的自组装是可能的,其中结构只是使自己,有时通过设置正确的环境来一点点刺激。我们还可以使用我们的方法进行大规模生产(并且在这方面拥有丰富的经验),从而降低生产成本。此外,这种方法使我们能够制造出使用普通技术完全不可能的结构,具有更小的纳米级特征和高度互连的3D架构。我们的结构可以变得灵活,我们还可以利用塑料来制造性能可以调整的设备,例如通过施加电压时改变纤维的颜色,或者拉伸或暴露于化学品。更新颖的想法,如电磁隐身(拉伸光通过周围的物体,从而保持不可见)也只有使用我们提出的那种3D材料才是现实的。这项资助的目的是汇集一批领先的研究人员,明确的挑战是联合收割机结合我们的专业知识,创建一个世界领先的软纳米光子学中心。这一领域刚刚兴起,我们保持着国际竞争优势,这将使我们能够开拓广泛的科学和应用领域。在这个计划补助金固有的灵活性将使我们能够继续我们的研究的快速步伐,在这个快速发展的领域出现的新机遇作出反应。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides
- DOI:10.1063/1.4851715
- 发表时间:2013-12-21
- 期刊:
- 影响因子:3.2
- 作者:Ahmad, Shahab;Baumberg, Jeremy J.;Prakash, G. Vijaya
- 通讯作者:Prakash, G. Vijaya
Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets
溶液处理的堆叠钙钛矿半导体片中的二维激子产生强光电流
- DOI:10.17863/cam.8783
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Ahmad S
- 通讯作者:Ahmad S
Halogen-bond driven self-assembly of perfluorocarbon monolayers on silicon nitride
- DOI:10.1039/c9ta04620h
- 发表时间:2019-11-14
- 期刊:
- 影响因子:11.9
- 作者:Abate, Antonio;Dehmel, Raphael;Neto, Chiara
- 通讯作者:Neto, Chiara
In situ intercalation dynamics in inorganic-organic layered perovskite thin films.
- DOI:10.1021/am501568j
- 发表时间:2014-07-09
- 期刊:
- 影响因子:9.5
- 作者:Ahmad, Shahab;Kanaujia, Pawan K.;Niu, Wendy;Baumberg, Jeremy J.;Prakash, G. Vijaya
- 通讯作者:Prakash, G. Vijaya
Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets.
- DOI:10.1021/acsami.5b07026
- 发表时间:2015-11-18
- 期刊:
- 影响因子:9.5
- 作者:Ahmad S;Kanaujia PK;Beeson HJ;Abate A;Deschler F;Credgington D;Steiner U;Prakash GV;Baumberg JJ
- 通讯作者:Baumberg JJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Baumberg其他文献
Plasmon-directed polymerization: Regulating polymer growth with light
等离子体定向聚合:用光调节聚合物生长
- DOI:
10.1007/s12274-018-2163-0 - 发表时间:
2018-08 - 期刊:
- 影响因子:9.9
- 作者:
Yunxia Wang;Shuangshuang Wang;Shunping Zhang;Oren Scherman;Jeremy Baumberg;Tao Ding;Hongxing Xu - 通讯作者:
Hongxing Xu
Jeremy Baumberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Baumberg', 18)}}的其他基金
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
- 批准号:
EP/Y036379/1 - 财政年份:2024
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Ubiquitous Optical Healthcare Technologies (ubOHT) Programme Grant
无处不在的光学医疗保健技术 (ubOHT) 计划拨款
- 批准号:
EP/X037770/1 - 财政年份:2023
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics)
先进光子纳米材料的卷对卷自组装(R2R-4Photonics)
- 批准号:
EP/N016920/1 - 财政年份:2016
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Nano-Optics to controlled Nano-Chemistry Programme Grant (NOtCH)
纳米光学受控纳米化学计划拨款 (NOtCH)
- 批准号:
EP/L027151/1 - 财政年份:2014
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Programmable nano-assembly of plasmonic materials for molecular interactions
用于分子相互作用的等离子体材料的可编程纳米组装
- 批准号:
EP/K028510/1 - 财政年份:2013
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Detecting cytosine methylation at the single DNA molecule level
在单个 DNA 分子水平检测胞嘧啶甲基化
- 批准号:
BB/I022686/1 - 财政年份:2012
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Elastomeric Opals: Follow on Fund
弹性蛋白石:跟随基金
- 批准号:
EP/H027130/1 - 财政年份:2010
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Cucurbitrils for Hardwired Optical and Electronic Self-assembly
用于硬连线光学和电子自组装的葫芦酯
- 批准号:
EP/H007024/1 - 财政年份:2009
- 资助金额:
$ 447.36万 - 项目类别:
Research Grant
Cambridge NanoScience through Engineering to Application Doctoral Training Centre: Assembly of Functional NanoMaterials and NanoDevices
剑桥纳米科学从工程到应用博士培训中心:功能纳米材料和纳米器件的组装
- 批准号:
EP/G037221/1 - 财政年份:2009
- 资助金额:
$ 447.36万 - 项目类别:
Training Grant
相似海外基金
Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
- 批准号:
FT220100053 - 财政年份:2023
- 资助金额:
$ 447.36万 - 项目类别:
ARC Future Fellowships
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
- 批准号:
2320265 - 财政年份:2023
- 资助金额:
$ 447.36万 - 项目类别:
Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
- 批准号:
2244031 - 财政年份:2023
- 资助金额:
$ 447.36万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
- 批准号:
2328540 - 财政年份:2023
- 资助金额:
$ 447.36万 - 项目类别:
Standard Grant
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
- 批准号:
545932-2020 - 财政年份:2022
- 资助金额:
$ 447.36万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nonlinear topological nanophotonics based on semiconductor photonic crystals
基于半导体光子晶体的非线性拓扑纳米光子学
- 批准号:
22H00298 - 财政年份:2022
- 资助金额:
$ 447.36万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10509318 - 财政年份:2022
- 资助金额:
$ 447.36万 - 项目类别:
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
- 批准号:
RGPIN-2020-04069 - 财政年份:2022
- 资助金额:
$ 447.36万 - 项目类别:
Discovery Grants Program - Individual
Topological Photonic Insulators in Silicon Nanophotonics
硅纳米光子学中的拓扑光子绝缘体
- 批准号:
558491-2021 - 财政年份:2022
- 资助金额:
$ 447.36万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral