COLLABORATIVE PROJECT: MAGIC - A multi-tiered approach to generating increased carbon dioxide for photosynthesis
合作项目:MAGIC - 为光合作用产生更多二氧化碳的多层方法
基本信息
- 批准号:BB/I024445/1
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Photosynthesis is at the core of virtually every aspect of society, from food production to industrial construction. Terrestrial photosynthesis is intimately connected with our use of other natural resources, and it exerts major controls on the water, mineral and carbon cycles of the world. For example, plant transpiration is thought to have contributed to recent changes in fresh-water availability associated with the global rise in CO2, and it is at the centre of a crisis in water availability expected over the next 20-30 years. Over this same period it is estimated that a 50% increase in global food production will be required to keep pace with the increase in human population. Crop yields have matched population growth until recently, but the gains from cereal cultivars bred in the Green Revolution were realised in full a decade ago. Thus it is vital that routes to further improvements in photosynthetic efficiency are sought now. In most species, CO2 is fixed by Ribulose Bisphosphate Carboxylase/Oxygenase (RuBisCO) in the Calvin-Benson cycle to generate a three-carbon compound. RuBisCO is remarkably poor in its substrate selectivity and promiscuously fixes both CO2 and O2, a fact that makes RuBisCO arguably the most inefficient step in photosynthesis. One way of reducing O2 use by RuBisCO is to raise the partial pressure of CO2 (pCO2). So-called carbon concentrating mechanisms (CCMs) have evolved multiple times in nature, albeit not as a feature of most common crop species. Thus, comparisons suggest roughly a 50% increase in overall yield might be realised if O2 use by RuBisCO were bypassed in crops. Significant resources have gone into engineering RuBisCO for increased CO2 selectivity and introducing a single-celled version of C4 photosynthesis in rice, but these approaches have yet to see a step change in photosynthetic efficiency. One new set of strategies yet to be explored is to co-opt light-driven pumps, anion exchange transport and substrate channelling to supply CO2 to RuBisCO. To date none of these processes is known to facilitate photosynthesis, although all three occur naturally and have been employed synthetically in biology. It is our goal to develop the equivalent of a 'two-stage pump': placing in series (1) a transport mechanism to concentrate HCO3- in the chloroplast powered by the light-driven ion pump halorhodopsin (hR) from the archeon Halobacterium halobium, and (2) substrate channelling within the chloroplast using one or more molecular 'building blocks' from Clostridium or cyanobacteria to carry HCO3- or a four-carbon intermediate to RuBisCO. This two-stage strategy is expected to maximise CCM gain driven independently with light energy absorbed by hR, and it has the added potential for engineering hR to tap the unused asset of light beyond the photosynthetic spectrum. Furthermore, an overarching feature of this approach is in its modular nature: it will be possible to develop each stage of the two-stage pump in parallel, and to assess its functionality separately at molecular, cellular and whole-organismal levels, combining the components thereafter for final validation. This modular approach ensures the maximum efficiency and speed in realising our goal within the three-year period.
从粮食生产到工业建设,光合作用几乎是社会方方面面的核心。陆地光合作用与我们对其他自然资源的利用密切相关,它对世界上的水、矿物和碳循环起着重要的控制作用。例如,植物蒸腾被认为是导致最近与全球二氧化碳上升相关的淡水供应变化的原因之一,它是未来20-30年预计将出现的水资源供应危机的核心。在同一时期,估计全球粮食产量将需要增加50%,才能跟上人口增长的步伐。直到最近,作物产量一直与人口增长相匹配,但在十年前,在绿色革命中培育的谷物品种的收益完全实现了。因此,现在寻求进一步提高光合作用效率的途径是至关重要的。在大多数物种中,二氧化碳在Calvin-Benson循环中被二磷酸核酮糖羧化酶/加氧酶(Rubisco)固定,生成三碳化合物。Rubisco在底物选择性方面非常差,并且混杂地固定二氧化碳和O2,这一事实使Rubisco可以说是光合作用中效率最低的步骤。减少Rubisco使用O2的一种方法是提高二氧化碳分压(PCO2)。所谓的碳浓缩机制(CCM)在自然界中已经进化了多次,尽管不是大多数常见作物物种的特征。因此,比较表明,如果在作物中绕过Rubisco对O2的消耗,总体产量可能会增加约50%。大量的资源已经投入到设计Rubisco以提高二氧化碳选择性和在水稻中引入单细胞版本的C4光合作用,但这些方法还没有看到光合作用效率的逐步变化。一套有待探索的新战略是利用光驱泵浦、阴离子交换传输和底物通道向Rubisco供应二氧化碳。到目前为止,人们还不知道这些过程中的任何一个有助于光合作用,尽管这三个过程都是自然发生的,并已被综合应用于生物学。我们的目标是开发相当于‘两级泵’的东西:(1)串联放置一种运输机制,以在叶绿体中浓缩HCO3--由原生盐生盐生细菌的光驱动离子泵卤视紫质(HR)驱动,以及(2)底物在叶绿体内利用来自梭状芽孢杆菌或蓝藻的一个或多个分子‘积木’来携带HCO3-或四碳中间体至Rubisco。这一分两个阶段的战略预计将最大限度地利用HR吸收的光能独立驱动CCM增益,并且它还具有额外的潜力,使HR能够利用光合作用光谱以外的未使用的光资产。此外,这种方法的一个主要特点是其模块化性质:可以并行开发两级泵的每一级,并在分子、细胞和整个生物体水平上分别评估其功能,然后结合组件进行最终验证。这种模块化的方法确保了在三年内实现我们的目标的最大效率和速度。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial photosynthesis modelling sets guidelines to constructing a viable single-cell cytoplasm-to-stroma C 4 cycle
空间光合作用模型为构建可行的单细胞细胞质到基质 C 4 循环提供了指导
- DOI:10.1101/274845
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Juric I
- 通讯作者:Juric I
Size matters for single-cell C$_4$ photosynthesis in $\textit{Bienertia}$
大小对于 $ extit{Bienertia}$ 中的单细胞 C$_4$ 光合作用很重要
- DOI:10.17863/cam.8871
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Juric I
- 通讯作者:Juric I
Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump.
计算模型预测使用单细胞 C4 生化泵的 C3 植物可大幅增加碳同化。
- DOI:10.1371/journal.pcbi.1007373
- 发表时间:2019
- 期刊:
- 影响因子:4.3
- 作者:Juric I
- 通讯作者:Juric I
Light-Driven Chloride Transport Kinetics of Halorhodopsin.
- DOI:10.1016/j.bpj.2018.06.009
- 发表时间:2018-07
- 期刊:
- 影响因子:3.4
- 作者:Hasin Feroz;Bryan H Ferlez;Cécile Lefoulon;Tingwei Ren;Carol S. Baker;John P. Gajewski;D. J. Lugar;Sandeep Gaudana;P. Butler;Jonas Hühn;M. Lamping;W. Parak;J. Hibberd;C. Kerfeld;N. Smirnoff;M. Blatt;J. Golbeck;Manish Kumar
- 通讯作者:Hasin Feroz;Bryan H Ferlez;Cécile Lefoulon;Tingwei Ren;Carol S. Baker;John P. Gajewski;D. J. Lugar;Sandeep Gaudana;P. Butler;Jonas Hühn;M. Lamping;W. Parak;J. Hibberd;C. Kerfeld;N. Smirnoff;M. Blatt;J. Golbeck;Manish Kumar
Size matters for single-cell C4 photosynthesis in Bienertia.
- DOI:10.1093/jxb/erw374
- 发表时间:2017-01
- 期刊:
- 影响因子:6.9
- 作者:Jurić I;González-Pérez V;Hibberd JM;Edwards G;Burroughs NJ
- 通讯作者:Burroughs NJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Hibberd其他文献
Julian Hibberd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian Hibberd', 18)}}的其他基金
Transcription factor networks regulating the cell specific gene expression required for C4 photosynthesis
转录因子网络调节 C4 光合作用所需的细胞特异性基因表达
- 批准号:
BB/W00013X/1 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Research Grant
16-ERACAPS. Designing C4 breeding strategies using genetic enablers of C4 evolution
16-ERACAPS。
- 批准号:
BB/S004629/1 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Taiwan Partnering Award: Using complementary resources in the UK and Taiwan to better understand photosynthesis in cereals
台湾合作奖:利用英国和台湾的互补资源更好地了解谷物的光合作用
- 批准号:
BB/S020004/1 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Activation of Non-Photosynthetic Leaf Cells for Improved Productivity
激活非光合作用叶细胞以提高生产力
- 批准号:
BB/P003117/1 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Data-driven hierarchical analysis of de novo transcriptomes
数据驱动的从头转录组分层分析
- 批准号:
BB/P011764/1 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Cell specific expression of genes in C4 photosynthesis
C4光合作用基因的细胞特异性表达
- 批准号:
BB/I002243/1 - 财政年份:2011
- 资助金额:
$ 51万 - 项目类别:
Research Grant
A laser cutting and laser capture microscope for plant biology
用于植物生物学的激光切割和激光捕获显微镜
- 批准号:
BB/E012582/1 - 财政年份:2007
- 资助金额:
$ 51万 - 项目类别:
Research Grant
相似海外基金
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
- 批准号:
10098114 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
EU-Funded
Net Zero Rail Product Commercialisation Project
净零轨产品商业化项目
- 批准号:
10098199 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Collaborative R&D
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Collaborative R&D
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Collaborative R&D
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Project Incubation: Training Undergraduates in Collaborative Research Ethics
项目孵化:培养本科生合作研究伦理
- 批准号:
2316154 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
- 批准号:
2345247 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
- 批准号:
2345273 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant