Putting the squeeze on PDs - reticulons, plasmodesmata and viral trafficking in plants

挤压PD——植物中的网状细胞、胞间连丝和病毒贩运

基本信息

  • 批准号:
    BB/J004987/1
  • 负责人:
  • 金额:
    $ 58.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Plant viruses are a serious economic pest, causing significant crop losses worldwide due to an ability to control their movement effectively. All plant viruses are extremely efficient at moving extensively within plants, causing necrosis and yield losses wherever they replicate to high levels. To move between plant cells, all viruses exploit plasmodesmata, specialised pores in the walls between adjacent cells. During the course of evolution viruses adopted very efficient strategies for modifying plasmodesmata so that their genetic material can be passed from one cell to the next. All plant viruses encode 'movement proteins', specialised proteins that interact with plasmodesmata, causing them to dilate and allow the viral genome to traffic through the pore. Through the center of the pore lies an axial membranous structure known as the desmotubule, and it is with this structure that movement proteins are thought to interact.The desmotubule is an enigmatic structure, unique to plants, and at only 15 nm in diameter is one of the most tightly constricted membrane structures known in nature. We hypothesise that a recently discovered family of proteins, known as the reticulons, function to remodel the plant endoplasmic reticulum into desmotubules, thus giving rise to plasmodesmata each time plant cells divide. We suggest, further, that the reticulons of the desmotubule function as the central target of viral movement proteins that bind to reticulons, causing an increase in the transport properties of plasmodesmata.It is argued that understanding the mechanism by which viruses pass through plasmodesmata is central to the development of strategies for eliminating virus movement in plants, thus controlling infections at the entry stage. This project will 'tag' reticulon proteins to examine the ways in which they give rise to the formation of plasmodesmata. It will also use genetic strategies to overproduce or eliminate reticulons during plant-cell division to examine the effects on the formation of plasmodesmata. It is likely that reticulons interact with other important proteins within plasmodesmata, and specific tagged reticulons will be used as biochemical 'bait' to identify these unknown proteins.The project will also attempt to make 'artificial desmotubules' by constricting membranes into fine tubes biochemically. These 'artificial desmotubules' will be used to study how viral movement proteins interact with desmotubules and to study how proteins are able to pass through native plasmodesmata. The project will involve a unique combination of state-of-the-art microscopy, genetics, virology and cell biology to understand how plants alone are able to make plasmodesmata. The results will have far reaching implications for controlling the movement of substances between plant cells, specifically the transport of infectious genetic material exemplified by viruses. An overall goal, through increased understanding of plasmodesmatal structure and function, is to develop effective strategies for the control of virus movement in crop species.
植物病毒是一种严重的经济害虫,由于能够有效控制其运动,导致全世界农作物遭受重大损失。所有植物病毒在植物内广泛传播的效率都非常高,只要它们复制到高水平,就会导致植物坏死和产量损失。为了在植物细胞之间移动,所有病毒都利用胞间连丝,即相邻细胞壁上的特殊孔。在进化过程中,病毒采用了非常有效的策略来修改胞间连丝,以便它们的遗传物质可以从一个细胞传递到下一个细胞。所有植物病毒都编码“运动蛋白”,这是一种与胞间连丝相互作用的特殊蛋白质,导致它们扩张并允许病毒基因组通过孔。孔的中心有一个称为桥丝管的轴向膜结构,人们认为运动蛋白正是通过这种结构相互作用。桥丝管是一种神秘的结构,是植物所独有的,直径仅为 15 nm,是自然界中已知最紧密收缩的膜结构之一。我们假设最近发现的一个称为网状蛋白的蛋白质家族,其功能是将植物内质网重塑为桥丝,从而在每次植物细胞分裂时产生胞间连丝。此外,我们还认为,桥连丝的网状结构是病毒运动蛋白的中心靶标,病毒运动蛋白与网状结构结合,导致胞间连丝的运输特性增强。有人认为,了解病毒穿过胞间连丝的机制对于制定消除植物中病毒运动的策略至关重要,从而在进入阶段控制感染。该项目将对网织蛋白进行“标记”,以检查它们引起胞间连丝形成的方式。它还将使用遗传策略在植物细胞分裂过程中过量产生或消除网状结构,以检查对胞间连丝形成的影响。网状结构很可能与胞间连丝内的其他重要蛋白质相互作用,并且特定标记的网状结构将被用作生化“诱饵”来识别这些未知蛋白质。该项目还将尝试通过生化将膜收缩成细管来制造“人工桥束”。这些“人工桥连丝”将用于研究病毒运动蛋白如何与桥连丝相互作用,并研究蛋白质如何能够通过天然胞间连丝。该项目将采用最先进的显微镜、遗传学、病毒学和细胞生物学的独特组合,以了解植物如何单独产生胞间连丝。这些结果将对控制植物细胞之间的物质运动产生深远的影响,特别是以病毒为代表的传染性遗传物质的运输。通过加深对胞间连丝结构和功能的了解,总体目标是制定有效的策略来控制病毒在作物物种中的运动。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-resolution Imaging of Live BY2 Cells Using 3D-structured Illumination Microscopy
使用 3D 结构照明显微镜对活 BY2 细胞进行超分辨率成像
  • DOI:
    10.21769/bioprotoc.1697
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bell K
  • 通讯作者:
    Bell K
ER Microsome Preparation in Arabidopsis thaliana.
拟南芥内质网微粒体的制备。
Arabidopsis Lunapark proteins are involved in ER cisternae formation
  • DOI:
    10.1101/256743
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kriechbaumer;E. Breeze;Charlotte Pain;Frances Tolmie;L. Frigerio;C. Hawes
  • 通讯作者:
    V. Kriechbaumer;E. Breeze;Charlotte Pain;Frances Tolmie;L. Frigerio;C. Hawes
Conference Paper
  • DOI:
    10.1016/s0987-7983(98)80087-x
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Chan
  • 通讯作者:
    Peter Chan
Arabidopsis Lunapark proteins are involved in ER cisternae formation.
  • DOI:
    10.1111/nph.15228
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kriechbaumer V;Breeze E;Pain C;Tolmie F;Frigerio L;Hawes C
  • 通讯作者:
    Hawes C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karl Oparka其他文献

Imaging plasmodesmata
  • DOI:
    10.1007/s00709-010-0233-6
  • 发表时间:
    2010-11-12
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Karen Bell;Karl Oparka
  • 通讯作者:
    Karl Oparka
Faculty Opinions recommendation of High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta.
植物中全长拟南芥基因产物的高通量荧光标记的教师意见建议。
  • DOI:
    10.3410/f.1019068.211541
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karl Oparka
  • 通讯作者:
    Karl Oparka
Special issue: Plasmodesmata
  • DOI:
    10.1007/s00709-010-0253-2
  • 发表时间:
    2010-12-14
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Manfred Heinlein;Alexander Schulz;Karl Oparka
  • 通讯作者:
    Karl Oparka

Karl Oparka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karl Oparka', 18)}}的其他基金

Development of phloem-mobile xenobiotics with enhanced transport properties
开发具有增强运输特性的韧皮部移动异生素
  • 批准号:
    BB/M025160/1
  • 财政年份:
    2015
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Research Grant
Dissecting plant virus infection at super-resolution
以超分辨率剖析植物病毒感染
  • 批准号:
    BB/H018719/1
  • 财政年份:
    2010
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Research Grant
A novel screen to identify components of the plant macromolecular trafficking pathway
识别植物大分子运输途径成分的新型筛选
  • 批准号:
    BB/D010462/1
  • 财政年份:
    2006
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Research Grant
Imaging the early events of virus infection in plants
对植物中病毒感染的早期事件进行成像
  • 批准号:
    BB/E001564/1
  • 财政年份:
    2006
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Research Grant

相似海外基金

Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016218/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Research Grant
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016749/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Research Grant
COLLABORATIVE RESEARCH: Feeling the Squeeze: How Financial Stress Shapes Decision Making and Risk for Drinking Water Systems in U.S. Cities
合作研究:感受到压力:财务压力如何影响美国城市饮用水系统的决策和风险
  • 批准号:
    2401551
  • 财政年份:
    2023
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Feeling the Squeeze: How Financial Stress Shapes Decision Making and Risk for Drinking Water Systems in U.S. Cities
合作研究:感受到压力:财务压力如何影响美国城市饮用水系统的决策和风险
  • 批准号:
    2402003
  • 财政年份:
    2023
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Continuing Grant
Squeeze Casting of Wrought Mg Alloys for Lightweight Structural Automotive Components
用于轻质汽车结构部件的变形镁合金挤压铸造
  • 批准号:
    RGPIN-2022-02946
  • 财政年份:
    2022
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Discovery Grants Program - Individual
SQUEEZE - Maximising Impact of Prescription Drugs in Rheumatoid Arthritis
SQUEEZE - 最大限度地发挥处方药对类风湿关节炎的作用
  • 批准号:
    10055567
  • 财政年份:
    2022
  • 资助金额:
    $ 58.08万
  • 项目类别:
    EU-Funded
COLLABORATIVE RESEARCH: Feeling the Squeeze: How Financial Stress Shapes Decision Making and Risk for Drinking Water Systems in U.S. Cities
合作研究:感受到压力:财务压力如何影响美国城市饮用水系统的决策和风险
  • 批准号:
    2049834
  • 财政年份:
    2021
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: Feeling the Squeeze: How Financial Stress Shapes Decision Making and Risk for Drinking Water Systems in U.S. Cities
合作研究:感受到压力:财务压力如何影响美国城市饮用水系统的决策和风险
  • 批准号:
    2048505
  • 财政年份:
    2021
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Continuing Grant
Novel mode-matched MEMS gyroscope with high capacity to tune frequency and Q-factor
新型模式匹配 MEMS 陀螺仪,具有高频率和 Q 因子调谐能力
  • 批准号:
    21J11628
  • 财政年份:
    2021
  • 资助金额:
    $ 58.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fill it, Squeeze it, Crush it: Extreme Gas Uptake in Microporous Materials
填充它、挤压它、压碎它:微孔材料中的极端气体吸收
  • 批准号:
    FT200100243
  • 财政年份:
    2020
  • 资助金额:
    $ 58.08万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了