Structural, biochemical and computational studies of KIBRA protein-protein and protein-phospholipid interactions that are important for memory
对记忆很重要的 KIBRA 蛋白质-蛋白质和蛋白质-磷脂相互作用的结构、生化和计算研究
基本信息
- 批准号:BB/J008176/1
- 负责人:
- 金额:$ 41.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
KIBRA and the molecular mechanism of memoryOur memories define who we are. Understanding the mechanisms behind the acquisition, storage and recall of memories is consequently a neuroscience holy grail. Memory depends on the interplay of different types of proteins (e.g. receptors, channels, enzymes, scaffold proteins). We will study KIBRA, a scaffold protein that is important for memory and that is linked to Alzheimer's disease. Since many details of how KIBRA functions in neurons (brain cells) are lacking, we will use experimental and computational methods to study KIBRA interactions with partner proteins and membranes (permeable biological boundaries between different parts of a cell or between cells). PKMzeta is crucial for long term memory storageThe mechanisms of short and long term memory differ. The pivotal player in long term memory storage is a protein called PKMzeta which works by modifying other proteins. Modification by PKMzeta of receptor proteins, especially AMPA receptors, at the surface of neurons, for example, causes the receptors to move to the postsynaptic membrane where they contribute to electrical or chemical signalling between neurons to maintain memories. PKMzeta acts like a conveyor belt to carry AMPA receptors to the synapse. Modulation of PKMzeta activity can disrupt or enhance memory.KIBRA-PKMzeta interaction is vital for PKMzeta functionOur collaborators have shown that KIBRA interaction with PKMzeta is crucial for PKMzeta's conveyor belt action. We will define details of KIBRA-PKMzeta interaction, e.g. the nature of the interface between the proteins, role of protein movement, and which protein components are most important for the interaction. Other KIBRA interactions that are important for memoryWe will study two other KIBRA interactions: with the key neuronal proteins Dendrin and Synaptopodin that are organisers of the molecular skeleton that gives neurons their characteristic shape; and KIBRA's interaction with membranes that maintains KIBRA in the correct location within neurons. Different parts of KIBRA are involved in its interactions with PKMzeta, Dendrin and Synaptopodin, and membranes.MethodsWe will use the complementary characteristics of multiple methods. NMR exploits the magnetic properties of nuclei to provide information about the shapes, shape changes and interactions of proteins at many locations throughout proteins and across a wide range of timescales (picoseconds to minutes). X-ray crystallography provides higher resolution shape information but less insight into dynamic behaviour. Other methods tell us about the strength and dynamics of protein interactions with other molecules. Computer simulations of protein behaviour provide insights that are not available from experiment alone, aid interpretation of experimental data and inform design of new experiments. Combining our study of molecules with our collaborator Joachim Kremerskothen's parallel experiments on cells and animals should lead to deep insight into KIBRA function. Long term goal: treatments for addictions, phobias, stress and anxiety disorders, and memory declineWe will use our results to guide alterations in KIBRA that disrupt/enhance its interactions. Dr Kremerskothen will study how these KIBRA alterations affect neuron functions and memory processes in animals. This could help in the development of new molecules that affect memory. One existing molecule called ZIP that inhibits PKMzeta, for example, erases all long term memories yet permits formation of new memories. Improved understanding of memory-related molecular interactions such as those of KIBRA could help to develop molecules that specifically disrupt individual long term memories rather than all long term memories, for example to treat addiction, phobias, stress and anxiety disorders, or develop molecules that enhance memory performance in the elderly, Alzheimer's patients, or physical trauma victims.
KIBRA和记忆的分子机制你的记忆定义了我们是谁。因此,理解记忆的获取、储存和回忆背后的机制是神经科学的圣杯。记忆依赖于不同类型的蛋白质(如受体、通道、酶、支架蛋白)的相互作用。我们将研究KIBRA,一种对记忆很重要的支架蛋白,它与阿尔茨海默病有关。由于缺乏KIBRA在神经元(脑细胞)中如何发挥作用的许多细节,我们将使用实验和计算方法来研究KIBRA与伴侣蛋白和膜(细胞不同部分之间或细胞之间的可渗透生物边界)的相互作用。PKMzeta对长期记忆的储存至关重要,短期记忆和长期记忆的机制不同。在长期记忆储存中起关键作用的是一种叫做PKMzeta的蛋白质,它通过修饰其他蛋白质起作用。例如,PKMzeta对神经元表面的受体蛋白,尤其是AMPA受体的修饰,会导致受体移动到突触后膜,在那里它们在神经元之间传递电信号或化学信号,以维持记忆。PKMzeta像传送带一样将AMPA受体运送到突触。调节PKMzeta活性可以破坏或增强记忆。KIBRA-PKMzeta相互作用对PKMzeta的功能至关重要。我们的合作者已经表明,KIBRA与PKMzeta的相互作用对PKMzeta的传送带作用至关重要。我们将定义KIBRA-PKMzeta相互作用的细节,例如,蛋白质之间界面的性质,蛋白质运动的作用,以及哪些蛋白质成分对相互作用最重要。其他对记忆很重要的KIBRA相互作用我们将研究另外两种KIBRA相互作用:与关键的神经元蛋白树突蛋白和突触蛋白的相互作用,它们是分子骨架的组织者,赋予神经元特征形状;以及KIBRA与细胞膜的相互作用,使KIBRA保持在神经元内的正确位置。KIBRA的不同部分参与其与PKMzeta,树突蛋白和突触蛋白以及膜的相互作用。方法利用多种方法的互补特点。核磁共振利用原子核的磁性来提供有关蛋白质在整个蛋白质的许多位置的形状、形状变化和相互作用的信息,并在很宽的时间尺度范围内(皮秒到分钟)。x射线晶体学提供了更高分辨率的形状信息,但对动态行为的了解较少。其他方法告诉我们蛋白质与其他分子相互作用的强度和动力学。蛋白质行为的计算机模拟提供了无法单独从实验中获得的见解,有助于解释实验数据并为新实验的设计提供信息。将我们对分子的研究与我们的合作者Joachim Kremerskothen在细胞和动物上的平行实验结合起来,应该会让我们对KIBRA的功能有更深入的了解。长期目标:治疗成瘾、恐惧症、压力和焦虑症以及记忆力减退。我们将利用我们的研究结果来指导KIBRA的改变,从而破坏/增强其相互作用。Kremerskothen博士将研究KIBRA的改变如何影响动物的神经元功能和记忆过程。这可能有助于开发影响记忆的新分子。例如,现有的一种抑制PKMzeta的分子ZIP可以消除所有的长期记忆,但允许形成新的记忆。提高对记忆相关分子相互作用的理解,比如KIBRA,可以帮助开发专门破坏个人长期记忆的分子,而不是所有的长期记忆,例如治疗成瘾、恐惧症、压力和焦虑症,或者开发增强老年人、阿尔茨海默氏症患者或身体创伤受害者记忆表现的分子。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extracellular Fibrinogen-binding Protein (Efb) from Staphylococcus aureus Inhibits the Formation of Platelet-Leukocyte Complexes.
- DOI:10.1074/jbc.m115.678359
- 发表时间:2016-02-05
- 期刊:
- 影响因子:0
- 作者:Posner MG;Upadhyay A;Abubaker AA;Fortunato TM;Vara D;Canobbio I;Bagby S;Pula G
- 通讯作者:Pula G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Bagby其他文献
New perceptions of transcription factor properties from NMR.
NMR 对转录因子特性的新认识。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Stefan Bagby;C. Arrowsmith;Mitsuhiko Ikura - 通讯作者:
Mitsuhiko Ikura
Letter to the Editor: Assignment of the 1H, 13C and 15N resonances of the catalytic domain of guanine nucleotide exchange factor SopE2 from Salmonella dublin
- DOI:
10.1023/a:1024057108445 - 发表时间:
2003-08-01 - 期刊:
- 影响因子:1.900
- 作者:
Christopher Williams;Edouard E. Galyov;Stefan Bagby - 通讯作者:
Stefan Bagby
Letter to the Editor: Assignment of the 1H, 13C and 15N resonances of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei
- DOI:
10.1023/b:jnmr.0000019244.41446.14 - 发表时间:
2004-06-01 - 期刊:
- 影响因子:1.900
- 作者:
Huan-Lin Wu;Christopher Williams;Abhishek Upadhyay;Edouard E. Galyov;Stefan Bagby - 通讯作者:
Stefan Bagby
Double and single stranded detection of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore sequencing
使用纳米孔测序对 5-甲基胞嘧啶和 5-羟甲基胞嘧啶进行双链和单链检测
- DOI:
10.1038/s42003-025-07681-0 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:5.100
- 作者:
Dominic Oliver Halliwell;Floris Honig;Stefan Bagby;Sandipan Roy;Adele Murrell - 通讯作者:
Adele Murrell
Stefan Bagby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Structural and evolutionary basis for insertion unidirectionality in RNA-guided DNA transposition systems
RNA引导的DNA转座系统中插入单向性的结构和进化基础
- 批准号:
10752287 - 财政年份:2023
- 资助金额:
$ 41.44万 - 项目类别:
Structural Biology and Computational Modeling Core
结构生物学和计算建模核心
- 批准号:
10513917 - 财政年份:2022
- 资助金额:
$ 41.44万 - 项目类别:
Creating a Unified RAS Structural Nomenclature to Compare the Impact of Oncogenic Mutations on KRAS, NRAS, and HRAS
创建统一的 RAS 结构命名法以比较致癌突变对 KRAS、NRAS 和 HRAS 的影响
- 批准号:
10734916 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10543489 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
Creating a Unified RAS Structural Nomenclature to Compare the Impact of Oncogenic Mutations on KRAS, NRAS, and HRAS
创建统一的 RAS 结构命名法以比较致癌突变对 KRAS、NRAS 和 HRAS 的影响
- 批准号:
10595591 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
The RNA structural code underlying pathological regulation of RNA splicing in metastasis
转移中RNA剪接病理调控的RNA结构密码
- 批准号:
10654522 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10643001 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
The RNA structural code underlying pathological regulation of RNA splicing in metastasis
转移中RNA剪接病理调控的RNA结构密码
- 批准号:
10358636 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
The RNA structural code underlying pathological regulation of RNA splicing in metastasis
转移中RNA剪接病理调控的RNA结构密码
- 批准号:
10117466 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10372918 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别: