The molecular mechanisms determining the onset of protein aggregation revealed by single molecule force-clamp spectroscopy

单分子力钳光谱揭示决定蛋白质聚集开始的分子机制

基本信息

  • 批准号:
    BB/J00992X/1
  • 负责人:
  • 金额:
    $ 46.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Each organ in our body is composed of a large number of individual cells working together in a coordinated fashion. Inside each cell, there are thousands of different proteins that perform their function in a very well-established and synchronized way. In general, each of these proteins can be found in two different shapes -the folded and the unfolded states. Proteins unfold and refold continuously in our bodies once they are expressed in the ribosomes, which are the small factories where they are produced. Most proteins are 'active' or 'functional' only when they are in their folded state. Failing to fold gives rise to a myriad of devastating diseases such as Alzhemier's, Parkinson's, Mad Cow, eye's cataracts and many others. These diseases have their origin when a single molecule undergoes a conformational change and is not able to fold back into its native structure anymore. This is one of the origins of toxicity; once a protein is unfolded and cannot get back to its folded state, it sticks to a neighboring unfolded protein in a rather fast way. This creates a nucleation seed that eventually results in the presence of aggregates, called amyloids, which are the signature of several diseases. For example, plaques of aggregates are found in the brains of Alzhemier's and Parkinson's disease patients. Perhaps the most conspicuous amyloid disease is cataract formation in the human eye, where the amyloids can be observed directly by looking into an affected eye. Unfortunately, once these amyloid aggregates are detected, it is often too late to act. It is therefore really challenging to discover why and when this aggregative process starts. This project aims to develop a new strategy to able to experimentally manipulate the state of a single protein and probe the time evolution of the different shapes and conformations adopted by each protein during its folding trajectory. The challenge is now to detect the mechanisms why proteins fail to fold, at the level of a single molecule. There are very few and only recent studies of aggregating proteins at the single molecule level. I will use a novel technique, named single molecule force-clamp spectroscopy, to study the different trajectories followed by an unfolded protein in its journey to the native state. This technique has already proved successful at identifying, for the first time, the different conformations adopted by a protein that has been evolutionary designed to fold. I will first further the investigations to completely understand the different trajectories followed by an individual protein until it folds. I will then expand this methodology to study the folding behaviour of proteins that cause a great variety of diseases such as Alzheimer's (the Abeta42 polypeptide), Parkinson's (caused by the aggregation of the alpha-synuclein protein) and also the eye's cataract, which is triggered by the misfolding of the protein gammaD crystallin. In all these cases, I will compare the behaviour of these amyloid-forming proteins with those proteins that succeed to fold. I will identify the conformation (folded, unfolded or intermediate) where each of these amyloid-forming proteins departs from the 'functional' folding route. I will finally study if the presence of other companion proteins, called chaperones, assists in the folding mechanism of the aggregating proteins. Altogether, these single molecule techniques have now reached a level of maturity where they can be used to attack more significant challenges in biology such as the basic biological mechanisms leading to protein aggregation, originating at the single molecule level. I seize on the remarkable opportunity of expanding the current applications of force-clamp to solving the common riddle of these diseases. These basic biophysical studies hold great promise for impacting several fields of research, such as the molecular understanding of such devastating human diseases for which there is, at the present time, no cure.
我们身体中的每个器官都是由大量的单个细胞以协调的方式共同工作组成的。在每个细胞内,有成千上万种不同的蛋白质,它们以一种非常完善和同步的方式发挥作用。一般来说,这些蛋白质中的每一种都可以以两种不同的形状存在-折叠和未折叠状态。一旦蛋白质在核糖体中表达,它们就会在我们的身体中不断地展开和重新折叠,核糖体是生产它们的小工厂。大多数蛋白质只有在处于折叠状态时才具有“活性”或“功能”。不能折叠会引起无数的毁灭性疾病,如阿尔茨海默氏症,帕金森氏症,疯牛病,白内障和许多其他疾病。当单个分子经历构象变化并且不再能够折叠回其天然结构时,这些疾病具有它们的起源。这是毒性的起源之一;一旦蛋白质被展开并且不能回到其折叠状态,它就会以相当快的方式粘附到相邻的未折叠蛋白质上。这会产生一个成核种子,最终导致聚集体的存在,称为淀粉样蛋白,这是几种疾病的标志。例如,在阿尔茨海默病和帕金森病患者的大脑中发现了聚集体斑块。也许最明显的淀粉样蛋白疾病是人眼中的白内障形成,其中淀粉样蛋白可以通过观察受影响的眼睛直接观察到。不幸的是,一旦检测到这些淀粉样蛋白聚集体,往往为时已晚。因此,要发现这一聚合过程为何以及何时开始,确实具有挑战性。该项目旨在开发一种新的策略,能够实验性地操纵单个蛋白质的状态,并探测每个蛋白质在其折叠轨迹期间所采用的不同形状和构象的时间演变。现在的挑战是在单个分子的水平上检测蛋白质无法折叠的机制。在单分子水平上对聚集蛋白质的研究很少,而且只有最近的研究。我将使用一种新的技术,命名为单分子力钳光谱,研究不同的轨迹所遵循的未折叠的蛋白质在其旅程的天然状态。这种技术已经被证明是成功的,第一次,通过进化设计折叠的蛋白质所采用的不同构象。我将首先进一步研究,以完全了解单个蛋白质折叠之前的不同轨迹。然后,我将扩展这种方法来研究导致各种疾病的蛋白质的折叠行为,例如阿尔茨海默氏症(Abeta 42多肽),帕金森氏症(由α-突触核蛋白的聚集引起)以及眼睛的白内障,这是由蛋白质gammaD晶体蛋白的错误折叠引发的。在所有这些情况下,我将比较这些淀粉样蛋白形成蛋白与那些成功折叠的蛋白的行为。我将确定构象(折叠,未折叠或中间),其中每一个这些淀粉样蛋白形成蛋白从“功能性”折叠路线出发。最后,我将研究其他伴侣蛋白(称为伴侣蛋白)的存在是否有助于聚集蛋白的折叠机制。总之,这些单分子技术现在已经达到了成熟的水平,它们可以用于攻击生物学中更重要的挑战,例如导致蛋白质聚集的基本生物学机制,起源于单分子水平。我抓住了一个非凡的机会,扩大目前的应用力钳,以解决这些疾病的共同之谜。这些基本的生物物理学研究对影响若干研究领域具有很大的希望,例如对目前无法治愈的这种毁灭性人类疾病的分子理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The force-dependent mechanism of DnaK-mediated mechanical folding.
  • DOI:
    10.1126/sciadv.aaq0243
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Perales-Calvo J;Giganti D;Stirnemann G;Garcia-Manyes S
  • 通讯作者:
    Garcia-Manyes S
Dividing cells regulate their lipid composition and localization.
  • DOI:
    10.1016/j.cell.2013.12.015
  • 发表时间:
    2014-01-30
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    Atilla-Gokcumen GE;Muro E;Relat-Goberna J;Sasse S;Bedigian A;Coughlin ML;Garcia-Manyes S;Eggert US
  • 通讯作者:
    Eggert US
The Mechanochemistry of a Structural Zinc Finger.
  • DOI:
    10.1021/acs.jpclett.5b01371
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Judit Perales-Calvo;Ainhoa Lezamiz;S. Garcia-Manyes
  • 通讯作者:
    Judit Perales-Calvo;Ainhoa Lezamiz;S. Garcia-Manyes
Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding.
  • DOI:
    10.1038/ncomms12490
  • 发表时间:
    2016-08-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Beedle AE;Lynham S;Garcia-Manyes S
  • 通讯作者:
    Garcia-Manyes S
Tailoring protein nanomechanics with chemical reactivity.
  • DOI:
    10.1038/ncomms15658
  • 发表时间:
    2017-06-06
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Beedle AEM;Mora M;Lynham S;Stirnemann G;Garcia-Manyes S
  • 通讯作者:
    Garcia-Manyes S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergi Garcia-Manyes其他文献

Steering chemical reactions with force
用外力操纵化学反应
  • DOI:
    10.1038/s41570-017-0083
  • 发表时间:
    2017-11-02
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Sergi Garcia-Manyes;Amy E. M. Beedle
  • 通讯作者:
    Amy E. M. Beedle
Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales
单分子磁镊在生理相关力和时间尺度下探测单个蛋白质的平衡动力学
  • DOI:
    10.1038/s41596-024-00965-5
  • 发表时间:
    2024-03-11
  • 期刊:
  • 影响因子:
    16.000
  • 作者:
    Rafael Tapia-Rojo;Marc Mora;Sergi Garcia-Manyes
  • 通讯作者:
    Sergi Garcia-Manyes
Revisiting Protein Folding at the Single Molecule Level
  • DOI:
    10.1016/j.bpj.2008.12.1903
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sergi Garcia-Manyes;Lorna Dougan;Carmen L. Badilla;Jasna Brujic;Julio Fernandez
  • 通讯作者:
    Julio Fernandez
Oxidative stress regulates talin mechanosensing
  • DOI:
    10.1016/j.bpj.2022.11.996
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Marc Mora Hortal;Rafael Tapia-Rojo;Fani Panagaki;Tania Auchynnikava;Sergi Garcia-Manyes
  • 通讯作者:
    Sergi Garcia-Manyes
Temperature Dependence of the Mechanical Unfolding of Single Ubiquitin Proteins
  • DOI:
    10.1016/j.bpj.2010.12.2362
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Ionel Popa;Sergi Garcia-Manyes;Julio M. Fernandez
  • 通讯作者:
    Julio M. Fernandez

Sergi Garcia-Manyes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergi Garcia-Manyes', 18)}}的其他基金

High-resolution, large scanning atomic force microscope (AFM) for capturing cellular processes in action
高分辨率、大扫描原子力显微镜 (AFM),用于捕获活动中的细胞过程
  • 批准号:
    EP/M022536/1
  • 财政年份:
    2015
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Research Grant
The nanomechanics of a single protein
单一蛋白质的纳米力学
  • 批准号:
    EP/K00641X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Fellowship

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Determining Potential Mechanisms of Worse Outcomes in Black HCM Patients
确定黑人 HCM 患者出现更糟糕结果的潜在机制
  • 批准号:
    10717764
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
  • 批准号:
    10637874
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining the molecular mechanisms of HIV-1 maturation
确定 HIV-1 成熟的分子机制
  • 批准号:
    10750083
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining the molecular mechanisms of CARM1's role in the maintenance and plasticity of skeletal muscle mass and function
确定 CARM1 在骨骼肌质量和功能的维持和可塑性中作用的分子机制
  • 批准号:
    479146
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Operating Grants
Chaperone protection in Lewy body and Alzheimer’s dementias: determining the structural, molecular and cellular mechanisms of a novel, non-canonical Hsp70 action blocking a-synuclein oligomerization
路易体和阿尔茨海默氏痴呆中的伴侣保护:确定阻断 α-突触核蛋白寡聚化的新型非典型 Hsp70 作用的结构、分子和细胞机制
  • 批准号:
    10649331
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining and targeting mechanisms controlling cancer cell division
确定和靶向控制癌细胞分裂的机制
  • 批准号:
    10818060
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining cell-specific mechanisms that drive aberrant bone regeneration in Down syndrome
确定驱动唐氏综合症骨再生异常的细胞特异性机制
  • 批准号:
    10654983
  • 财政年份:
    2023
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
  • 批准号:
    10352493
  • 财政年份:
    2022
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
  • 批准号:
    10613457
  • 财政年份:
    2022
  • 资助金额:
    $ 46.73万
  • 项目类别:
Determining the environmental modifiers and molecular mechanisms of liver disease in X-linked myotubular myopathy.
确定 X 连锁肌管肌病肝病的环境调节剂和分子机制。
  • 批准号:
    473683
  • 财政年份:
    2022
  • 资助金额:
    $ 46.73万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了