High-resolution, large scanning atomic force microscope (AFM) for capturing cellular processes in action
高分辨率、大扫描原子力显微镜 (AFM),用于捕获活动中的细胞过程
基本信息
- 批准号:EP/M022536/1
- 负责人:
- 金额:$ 0.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Atomic force microscopy (AFM) has become, in the last recent years, a key analytic tool to investigate the topographical properties of a wide variety of substrates, at the nanometer scale. While initial applications were basically focused on surface science and tribological applications, this technique has now matured enough to evolve and take on new challenges, such as the understanding of the physics underlying the molecular mechanisms governing a number of fundamental biological processes occurring within the core of an individual cell. Due to their large size, spanning up to ca. 30 micrometers in height, these cell measurements have been severely hampered by the (limited) imaging size affordable by current AFM instrumentation. Here we aim to acquire a high-resolution, fast, large scanning atomic force microscope (AFM) that will circumvent these technical limitations, thus enabling us to visualise and quantify molecular interactions on whole living cells and tissues at high spatial, temporal, and force resolution. Its unique combination with high-resolution optical microscopy will allow coupling single molecule nanomechanics with single molecule biophotonics. Since Scanning Probe techniques have gained experimental access to the molecular/atomic level, many crucial questions that remained unexplored can now be experimentally attacked. For example, while general thermodynamics laws were deducted for large ensembles of molecules, many key biological processes require only a few individual molecules to occur. Therefore, new single molecule experiments, often occurring under non-equilibrium conditions, will probe the extent and validity of classical thermodynamics laws to describe out-of-equilibrium biological processes occurring in real time within the framework of a living cell. Moreover, by pushing forward the instrumental limits, topographic sub-nanometer resolution will allow direct observation and measurement of the physical properties of distinct bio-molecular interfaces with key in-vivo implications. The novel combination with optical microscopy will enable to combine the strengths of both microscopy techniques and capture the single molecule processes occurring on the cell substrate (AFM) and those occurring in the cell interior, using fluorescence microscopy. Combined, these experiments will allow a comprehensive vista on individual processes occurring within a cell with unprecedented single molecule detection. The research enabled by this novel instrumentation is open ended. In particular, it will help elucidate the molecular mechanisms underlying cell mechanics, and the mechanical feedback mechanism by which substrate stiffness dictates the fate of individual stem cells. It will also allow to directly probe the hypothesis that several genes are mechano-activated, and that mechanical forces can transmit from the extracellular matrix down to the cell nucleus in an efficient way that does not rely on simple damped diffusion. These experiments will put a strong accent on the mechanisms governing mechanostranduction and cell adhestion, thus greatly complementing and expanding world-leading research being currently conducted in King's College London and other leading institutions in the London Area (Oxford, Francis Crick Institute). Moreover, the technical developments allowed by this new instrument will enable new cell-based nanotechnological applications, of particular interest for the London Centre for Nanotechnology (LCN). Altogether, this equipment will foster and encourage fruitful collaborations with other London- (and UK-) based institutions working on the intense and prolific research fields of mechanobiology and biophysics, allowing a cross-disciplinary approach and dwelling from the single cell to the single molecule level.
近年来,原子力显微镜(AFM)已成为在纳米尺度上研究各种衬底形貌特性的关键分析工具。虽然最初的应用主要集中在表面科学和摩擦学应用上,但这项技术现在已经足够成熟,可以发展并接受新的挑战,例如理解管理单个细胞核心内发生的许多基本生物过程的分子机制的物理学基础。由于其规模庞大,跨越到约。30微米的高度,这些细胞测量已严重阻碍了(有限的)成像尺寸负担得起的目前的AFM仪器。在这里,我们的目标是获得一个高分辨率,快速,大型扫描原子力显微镜(AFM),将规避这些技术限制,从而使我们能够可视化和量化分子相互作用的整个活细胞和组织在高空间,时间和力的分辨率。它与高分辨率光学显微镜的独特组合将允许单分子纳米力学与单分子生物光子学耦合。由于扫描探针技术已经获得了分子/原子水平的实验访问,许多尚未探索的关键问题现在可以通过实验进行攻击。例如,虽然一般的热力学定律是针对大的分子集合推导的,但许多关键的生物过程只需要几个单独的分子就可以发生。因此,新的单分子实验,经常发生在非平衡条件下,将探索经典热力学定律的范围和有效性,以描述在活细胞的框架内真实的时间发生的非平衡生物过程。此外,通过推动仪器的极限,地形亚纳米分辨率将允许直接观察和测量不同的生物分子界面的物理特性与关键的体内影响。与光学显微镜的新组合将使联合收割机的两种显微镜技术的优势和捕获的单分子过程中发生的细胞基板(AFM)和那些发生在细胞内部,使用荧光显微镜。结合起来,这些实验将允许对细胞内发生的单个过程进行全面的观察,并进行前所未有的单分子检测。由这种新型仪器实现的研究是开放式的。特别是,它将有助于阐明细胞力学的分子机制,以及基质刚度决定单个干细胞命运的机械反馈机制。它还将允许直接探测几个基因被机械激活的假设,并且机械力可以以不依赖于简单阻尼扩散的有效方式从细胞外基质向下传递到细胞核。这些实验将着重强调机械传导和细胞粘附的机制,从而极大地补充和扩展了伦敦国王学院和伦敦地区其他领先机构(牛津、弗朗西斯克里克研究所)目前正在进行的世界领先的研究。此外,这种新仪器所允许的技术发展将使新的基于细胞的纳米技术应用成为可能,伦敦纳米技术中心(LCN)对此特别感兴趣。总而言之,这些设备将促进和鼓励与其他位于伦敦(和英国)的机构进行富有成效的合作,这些机构致力于机械生物学和生物物理学等密集而多产的研究领域,允许采用跨学科方法并从单细胞到单分子水平。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loxl2 is dispensable for dermal development, homeostasis and tumour stroma formation.
- DOI:10.1371/journal.pone.0199679
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Kober KI;Cano A;Géraud C;Sipilä K;Mobasseri SA;Philippeos C;Pisco AO;Stannard A;Martin A;Salvador F;Santos V;Boutros M;Rognoni E;Watt FM
- 通讯作者:Watt FM
The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair.
- DOI:10.1016/j.devcel.2021.10.022
- 发表时间:2021-12-06
- 期刊:
- 影响因子:11.8
- 作者:Wallis SS;Ventimiglia LN;Otigbah E;Infante E;Cuesta-Geijo MA;Kidiyoor GR;Carbajal MA;Fleck RA;Foiani M;Garcia-Manyes S;Martin-Serrano J;Agromayor M
- 通讯作者:Agromayor M
Controlling Anomalous Diffusion in Lipid Membranes
- DOI:10.1016/j.bpj.2018.12.024
- 发表时间:2019-03-19
- 期刊:
- 影响因子:3.4
- 作者:Coker, Helena L. E.;Cheetham, Matthew R.;Wallace, Mark, I
- 通讯作者:Wallace, Mark, I
Protein nanomechanics: The power of stretching
蛋白质纳米力学:拉伸的力量
- DOI:10.1051/epn/2020503
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Mora M
- 通讯作者:Mora M
Forcing the reversibility of a mechanochemical reaction.
- DOI:10.1038/s41467-018-05115-6
- 发表时间:2018-08-08
- 期刊:
- 影响因子:16.6
- 作者:Beedle AEM;Mora M;Davis CT;Snijders AP;Stirnemann G;Garcia-Manyes S
- 通讯作者:Garcia-Manyes S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergi Garcia-Manyes其他文献
Steering chemical reactions with force
用外力操纵化学反应
- DOI:
10.1038/s41570-017-0083 - 发表时间:
2017-11-02 - 期刊:
- 影响因子:51.700
- 作者:
Sergi Garcia-Manyes;Amy E. M. Beedle - 通讯作者:
Amy E. M. Beedle
Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales
单分子磁镊在生理相关力和时间尺度下探测单个蛋白质的平衡动力学
- DOI:
10.1038/s41596-024-00965-5 - 发表时间:
2024-03-11 - 期刊:
- 影响因子:16.000
- 作者:
Rafael Tapia-Rojo;Marc Mora;Sergi Garcia-Manyes - 通讯作者:
Sergi Garcia-Manyes
Revisiting Protein Folding at the Single Molecule Level
- DOI:
10.1016/j.bpj.2008.12.1903 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Sergi Garcia-Manyes;Lorna Dougan;Carmen L. Badilla;Jasna Brujic;Julio Fernandez - 通讯作者:
Julio Fernandez
Oxidative stress regulates talin mechanosensing
- DOI:
10.1016/j.bpj.2022.11.996 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Marc Mora Hortal;Rafael Tapia-Rojo;Fani Panagaki;Tania Auchynnikava;Sergi Garcia-Manyes - 通讯作者:
Sergi Garcia-Manyes
Temperature Dependence of the Mechanical Unfolding of Single Ubiquitin Proteins
- DOI:
10.1016/j.bpj.2010.12.2362 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Ionel Popa;Sergi Garcia-Manyes;Julio M. Fernandez - 通讯作者:
Julio M. Fernandez
Sergi Garcia-Manyes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergi Garcia-Manyes', 18)}}的其他基金
The nanomechanics of a single protein
单一蛋白质的纳米力学
- 批准号:
EP/K00641X/1 - 财政年份:2013
- 资助金额:
$ 0.28万 - 项目类别:
Fellowship
The molecular mechanisms determining the onset of protein aggregation revealed by single molecule force-clamp spectroscopy
单分子力钳光谱揭示决定蛋白质聚集开始的分子机制
- 批准号:
BB/J00992X/1 - 财政年份:2012
- 资助金额:
$ 0.28万 - 项目类别:
Research Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
钙激活的大电流钾离子通道β1亚基影响慢性肾脏病进展的机制探讨
- 批准号:81070587
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
- 批准号:30901566
- 批准年份:2009
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
稀疏全基因组关联分析方法研究
- 批准号:10926200
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
Structural Basis of Coupling and Dynamics in K+ Channels
K 通道耦合和动力学的结构基础
- 批准号:
10682241 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
GigaFIBI; rapid, large-format histology-resolution imaging for Intraoperative assessment of breast lumpectomy margins
千兆FIBI;
- 批准号:
10568823 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
Advanced optics to unlock large field-of-view multiphoton imaging for neuroscience and beyond
先进的光学器件可为神经科学及其他领域解锁大视场多光子成像
- 批准号:
10829782 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
A multi-foci objective lens for large scale brain activity recording
用于大规模大脑活动记录的多焦点物镜
- 批准号:
10731905 - 财政年份:2023
- 资助金额:
$ 0.28万 - 项目类别:
Understanding the Microcircuits in Monkey Sensory Cortices: a Connectomic Approach
了解猴子感觉皮层的微电路:连接组学方法
- 批准号:
10546501 - 财政年份:2022
- 资助金额:
$ 0.28万 - 项目类别: