A platform for high throughput two-photon-targeted in vivo cellular physiology

高通量双光子靶向体内细胞生理学平台

基本信息

  • 批准号:
    BB/K001817/1
  • 负责人:
  • 金额:
    $ 53.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The whole-cell patch clamp recording technique has had much impact in the Life Sciences by allowing the currents in ion channels to recorded: this has been crucial to advances in our understanding of cellular function. Use of the patch-clamp technique in vivo, however, has been difficult, because it essentially has to be carried out "blind", with the only feedback obtained by monitoring the impedance of the micropipette used to make the recording.Recent developments in multiphoton microscopy now allow us to make targeted recordings from cells that have been fluorescently labelled. It has also recently been shown that in vivo patch-clamp recordings can be automated. In this project, we will combine these principles to develop a new approach for whole cell patch clamp electrophysiology. Our platform will allow genetically targeted classes of cells to be visually selected ("point and click") by a human operator, and then automatically patched by a group of robotic micromanipulators capable of obtaining recordings from up to six cells simultaneously. As well as allowing high throughput characterization of cells in vivo for basic scientific or drug discovery purposes, our platform will allow new scientific questions to be asked involving interactions between cells that have not hitherto been addressable. Finally, the precision afforded by the automated robotic control system will allow the patch-clamping of subcellular structures in vivo, which has not previously been systematically achievable. We will demonstrate the utility of our two-photon targeted robotic patch clamp platform by using it to target two particular classes of pyramidal cell in the mouse cerebral cortex, in order to ascertain their respective roles in processing sensory information.
全细胞膜片钳记录技术通过记录离子通道中的电流在生命科学中产生了很大的影响:这对我们理解细胞功能的进步至关重要。在体内使用膜片钳技术,然而,一直很困难,因为它基本上是进行“盲”,与唯一的反馈,通过监测用于使recording.Recent发展中的多光子显微镜的微管阻抗获得现在允许我们从已被荧光标记的细胞进行有针对性的记录。最近还表明,在体内膜片钳记录可以自动化。在本计画中,我们将联合收割机结合这些原理,发展出一种全细胞膜片钳电生理学的新方法。我们的平台将允许人类操作员视觉选择(“点击”)遗传靶向细胞类别,然后由一组能够同时获得多达六个细胞记录的机器人显微操作器自动修补。除了允许用于基础科学或药物发现目的的体内细胞的高通量表征外,我们的平台还将允许提出新的科学问题,涉及迄今为止尚未解决的细胞之间的相互作用。最后,自动化机器人控制系统提供的精度将允许在体内对亚细胞结构进行膜片钳,这在以前是无法系统实现的。我们将展示我们的双光子靶向机器人膜片钳平台的实用性,通过使用它来靶向小鼠大脑皮层中的两个特定类别的锥体细胞,以确定它们各自在处理感觉信息中的作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
  • DOI:
    10.3389/fnins.2015.00516
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Cheung K;Schultz SR;Luk W
  • 通讯作者:
    Luk W
Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus.
  • DOI:
    10.1038/ncomms13579
  • 发表时间:
    2016-12-08
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Jager, Polona;Ye, Zhiwen;Yu, Xiao;Zagoraiou, Laskaro;Prekop, Hong-Ting;Partanen, Juha;Jessell, Thomas M.;Wisden, William;Brickley, Stephen G.;Delogu, Alessio
  • 通讯作者:
    Delogu, Alessio
Two-photon targeted robotic patch-clamp electrophysiological recording in vivo.
双光子靶向机器人膜片钳体内电生理记录。
Progress in automating patch clamp cellular physiology.
  • DOI:
    10.1177/2398212818776561
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Annecchino, Luca A;Schultz, Simon R
  • 通讯作者:
    Schultz, Simon R
Neuronal gain modulability is determined by dendritic morphology: a computational optogenetic study
神经元增益可调节性由树突形态决定:计算光遗传学研究
  • DOI:
    10.1101/096586
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jarvis S
  • 通讯作者:
    Jarvis S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Schultz其他文献

Markov Stability partitioning shows spectrally dependent community structure amongst thalamocortical neural ensembles
  • DOI:
    10.1186/1471-2202-16-s1-p222
  • 发表时间:
    2015-12-18
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Christian-David Martin;Silvia Ardila-Jimenez;Simon Schultz
  • 通讯作者:
    Simon Schultz
NEUROMOD+: Co-creation for next-generation neuromodulation therapeutics
NEUROMOD+:下一代神经调节疗法的共同创造
  • DOI:
    10.1016/j.brs.2024.12.873
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Hayriye Cagnan;Sarah Chan;Rylie Green;Kate Hobson;Stephen Jackson;JeYoung Jung;Marcus Kaiser;Sophie Morse;Ashwini Oswal;Simon Schultz
  • 通讯作者:
    Simon Schultz
Using GLMs to recover sparse connectivity in complex networks
  • DOI:
    10.1186/1471-2202-11-s1-p53
  • 发表时间:
    2010-07-20
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Daniel Cook;Duncan Gillies;Simon Schultz
  • 通讯作者:
    Simon Schultz

Simon Schultz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Schultz', 18)}}的其他基金

Statistical physics of cognition
认知统计物理学
  • 批准号:
    EP/W024020/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Research Grant
NeuroMod+: Co-creation for next-generation neuromodulation therapeutics
NeuroMod:共同创造下一代神经调节疗法
  • 批准号:
    EP/W035057/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Research Grant
Cerebral organoid models for optical investigation of neural circuit dynamics in neurodegenerative diseases
用于神经退行性疾病神经回路动力学光学研究的脑类器官模型
  • 批准号:
    NC/W000903/1
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Research Grant
Noninvasive, ultrasound-mediated viral delivery of genes for optogenetic study of brain function
无创、超声介导的病毒基因传递用于脑功能的光遗传学研究
  • 批准号:
    BB/R022437/1
  • 财政年份:
    2018
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Research Grant

相似国自然基金

转录因子DNA结合谱绘制新方法及其应用研究
  • 批准号:
    61171030
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

A high throughput multiplexed pipeline for models of Alzheimer’s Disease
用于阿尔茨海默病模型的高通量多重管道
  • 批准号:
    10766665
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
High-throughput Human Micro-Heart Muscle for Drug Discovery
用于药物发现的高通量人体微心肌
  • 批准号:
    10682473
  • 财政年份:
    2022
  • 资助金额:
    $ 53.24万
  • 项目类别:
Two MHCs versus one and the affect on T cell repertoire in autoimmune diabetes
两种 MHC 与一种 MHC 以及对自身免疫性糖尿病中 T 细胞库的影响
  • 批准号:
    10468670
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
A Feasibility Study of a High-Throughput Live-Cell Microscopy Design for Visualizing Viral Particle Action and Nano-Carrier Delivery Performance
用于可视化病毒颗粒作用和纳米载体传递性能的高通量活细胞显微镜设计的可行性研究
  • 批准号:
    10193517
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
Two MHCs versus one and the affect on T cell repertoire in autoimmune diabetes
两种 MHC 与一种 MHC 以及对自身免疫性糖尿病中 T 细胞库的影响
  • 批准号:
    10669625
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
A 2D Intestinal Crypt Platform for Compound Screens
用于复合屏幕的 2D 肠隐窝平台
  • 批准号:
    10322319
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
A 2D Intestinal Crypt Platform for Compound Screens
用于复合屏幕的 2D 肠隐窝平台
  • 批准号:
    10708947
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
OpenScope: A Platform for High-Throughput and Reproducible Neurophysiology Open to External Scientists to Test Impactful Theories of Brain Function
OpenScope:向外部科学家开放的高通量和可重复的神经生理学平台,用于测试有影响力的大脑功能理论
  • 批准号:
    10379878
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
Two MHCs versus one and the affect on T cell repertoire in autoimmune diabetes
两种 MHC 与一种 MHC 以及对自身免疫性糖尿病中 T 细胞库的影响
  • 批准号:
    10312642
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
OpenScope: A Platform for High-Throughput and Reproducible Neurophysiology Open to External Scientists to Test Impactful Theories of Brain Function
OpenScope:向外部科学家开放的高通量和可重复的神经生理学平台,用于测试有影响力的大脑功能理论
  • 批准号:
    10610885
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了