Mechanisms mediating axon outgrowth in the Drosophila CNS

介导果蝇中枢神经系统轴突生长的机制

基本信息

  • 批准号:
    BB/K002031/1
  • 负责人:
  • 金额:
    $ 55.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

We are dependent on our nervous system functioning correctly for us to move, think, learn, speak and control our bodies. To do this, all our nerve cells must connect together in the brain and to the parts of the body they control. Most of this 'wiring together' happens during the growth and development of the embryo during pregnancy. To do this each nerve cell must extend a long process, called an axon, over large distances and through complex environments to find and connect to its appropriate partners. Each axon is guided when to turn and which way to grow to reach its partner by sensing specific chemicals or molecular 'cues' in different parts of the body. These signals are detected by 'receptor' proteins at the tip of the growing axon. The activity of these receptors signal information into the axon to direct its growth. To enable this to happen efficiently the nerve cell has to co-ordinate its internal organisation with that of the external signals. By studying these processes we will understand better how the nervous system is formed and we can apply this knowledge to aiding the development of strategies to repair the nervous system of patients who have suffered neural injury or disease.We want to find the molecules that work to control the growth of the axon to guide it along its pathways. We know already that many of the same molecules and receptors in mammals are also present in smaller animals like the fruitfly Drosophila where they do the same job but on a simpler scale. We are using Drosophila to characterise the signalling processes that function within the axon to organise internal signals that facilitate the axon's ability to respond to external signals. We have found that two proteins called Mud and Frizzled have a role in this process. We wish to understand the precise mechanisms of action of these proteins and how they facilitate the targeted growth of axons in the central nervous system. We know that similar molecules are also active during the development of the mammalian nervous system. By using Drosophila we can rapidly identify the mechanims by which these molecules act and the partners that are necessary for their activity. Also use of Drosophila allows us to reduce the need to sacrifice large numbers of mice in research. Once we have found out how these molecules work in Drosophila we will inform other researchers so that the molecules can be tested in other model systems. We need this information both to learn how the nervous system is made and to find out what molecules might be useful in helping us to repair neural injuries or diseases that lead to paralysis or neural degeneration. Unfortunately mammals cannot repair nerve damage that occurs in the brain, our hope is that by identifying the molecules that were originally used to drive and direct nerve cell growth in the embryo we can re-supply these molecules to help nerve cell regeneration in people.
我们依赖于我们的神经系统正常运作,让我们移动,思考,学习,说话和控制我们的身体。要做到这一点,我们所有的神经细胞必须在大脑中连接在一起,并连接到它们控制的身体部位。大多数这种“连接在一起”发生在怀孕期间胚胎的生长和发育过程中。要做到这一点,每个神经细胞必须延伸一个很长的过程,称为轴突,在很长的距离和复杂的环境中找到并连接到合适的伙伴。每个轴突通过感知身体不同部位的特定化学物质或分子“线索”来指导何时转向以及以何种方式生长以到达其伴侣。这些信号被生长轴突顶端的“受体”蛋白检测到。这些受体的活动将信息传递到轴突中以指导其生长。为了使这种情况有效地发生,神经细胞必须协调其内部组织与外部信号。通过研究这些过程,我们将更好地了解神经系统是如何形成的,我们可以应用这些知识来帮助开发策略,以修复遭受神经损伤或疾病的患者的神经系统。我们希望找到控制轴突生长的分子,以引导轴突沿着其路径生长。我们已经知道,哺乳动物中的许多相同分子和受体也存在于较小的动物中,如果蝇,它们在那里做同样的工作,但规模更简单。我们用果蝇来模拟轴突内的信号传递过程,这些信号传递过程组织内部信号,促进轴突对外部信号做出反应的能力。我们已经发现两种名为Mud和Frizzled的蛋白质在这个过程中起作用。我们希望了解这些蛋白质的确切作用机制,以及它们如何促进中枢神经系统中轴突的靶向生长。我们知道,类似的分子在哺乳动物神经系统的发育过程中也很活跃。通过使用果蝇,我们可以快速识别这些分子的作用机制以及它们的活性所必需的伴侣。使用果蝇也使我们能够减少在研究中牺牲大量小鼠的需要。一旦我们发现这些分子如何在果蝇中起作用,我们将通知其他研究人员,以便这些分子可以在其他模型系统中进行测试。我们需要这些信息来了解神经系统是如何形成的,并找出哪些分子可能有助于我们修复导致瘫痪或神经退化的神经损伤或疾病。不幸的是,哺乳动物无法修复大脑中发生的神经损伤,我们希望通过识别最初用于驱动和指导胚胎神经细胞生长的分子,我们可以重新供应这些分子,以帮助人类神经细胞再生。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mushroom body defect is required in parallel to Netrin for midline axon guidance in Drosophila.
与Netrin平行需要蘑菇体缺陷,以进行果蝇中线轴突指导。
  • DOI:
    10.1242/dev.129684
  • 发表时间:
    2016-03-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cate MS;Gajendra S;Alsbury S;Raabe T;Tear G;Mitchell KJ
  • 通讯作者:
    Mitchell KJ
Commissureless regulation of axon outgrowth across the midline is independent of Rab function.
  • DOI:
    10.1371/journal.pone.0064427
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    van den Brink DM;Banerji O;Tear G
  • 通讯作者:
    Tear G
A dual-strategy expression screen for candidate connectivity labels in the developing thalamus.
  • DOI:
    10.1371/journal.pone.0177977
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bibollet-Bahena O;Okafuji T;Hokamp K;Tear G;Mitchell KJ
  • 通讯作者:
    Mitchell KJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guy Justin Clive Tear其他文献

Guy Justin Clive Tear的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guy Justin Clive Tear', 18)}}的其他基金

Mechanisms mediating intracellular sorting of Roundabout
介导 Roundabout 细胞内排序的机制
  • 批准号:
    BB/G022399/1
  • 财政年份:
    2009
  • 资助金额:
    $ 55.05万
  • 项目类别:
    Research Grant
Characterization of novel Drosophila candidate axon guidance molecules
新型果蝇候选轴突引导分子的表征
  • 批准号:
    BB/F014287/1
  • 财政年份:
    2008
  • 资助金额:
    $ 55.05万
  • 项目类别:
    Research Grant
Evaluation of the kinases responsible for tau toxicity
评估负责 tau 毒性的激酶
  • 批准号:
    G0500261/1
  • 财政年份:
    2006
  • 资助金额:
    $ 55.05万
  • 项目类别:
    Research Grant

相似国自然基金

脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
  • 批准号:
    82371528
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
  • 批准号:
    10522519
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Elucidating and harnessing the molecular mechanisms of protective clearance in endogenous and engineered phagocytes
阐明和利用内源性和工程化吞噬细胞保护性清除的分子机制
  • 批准号:
    10729935
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Isolating region specific α-syn-mediated mechanisms in mitochondrial function in vivo
体内线粒体功能中分离区域特异性 α-syn 介导的机制
  • 批准号:
    10809994
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Unraveling the Mechanisms of Neurodegeneration in TBCK Encephaloneuronopathy
揭示 TBCK 脑神经病神经变性的机制
  • 批准号:
    10700602
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Cell-Intrinsic Mechanisms of Presynaptic Assembly
突触前组装的细胞内在机制
  • 批准号:
    10786383
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Mechanisms of Action of Peripheral Nerve Stimulation for the Treatment of Chronic Neuropathic Pain
周围神经刺激治疗慢性神经病理性疼痛的作用机制
  • 批准号:
    10730521
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Investigating the cellular and molecular mechanisms of lower-chlorinated polychlorinated biphenyl developmental neurotoxicity
研究低氯多氯联苯发育神经毒性的细胞和分子机制
  • 批准号:
    10678135
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
  • 批准号:
    10664507
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Molecular and cellular mechanisms of HSV-1 assembly and egress
HSV-1 组装和流出的分子和细胞机制
  • 批准号:
    10842129
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
Developmental Mechanisms of Fine-scale Cortico-cortical Circuit Formation
精细皮质-皮质回路形成的发育机制
  • 批准号:
    10744933
  • 财政年份:
    2023
  • 资助金额:
    $ 55.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了