Mechanisms mediating intracellular sorting of Roundabout
介导 Roundabout 细胞内排序的机制
基本信息
- 批准号:BB/G022399/1
- 负责人:
- 金额:$ 44.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are dependent on our nervous system functioning correctly for us to move, think, learn, speak and control our bodies. To do this all our nerve cells must connect up in the brain and to the parts of the body they control. Most of this 'wiring together' happens during the growth and development of the embryo in pregnancy. To do this each nerve cell must extend a long process, called an axon, over large distances and through complex environments to find and connect to its appropriate partners. Each axon is guided when to turn and which way to grow to reach its partner by sensing specific chemicals or molecular 'cues' in different parts of the body. These signals are detected by 'receptor' proteins at the tip of the growing axon. The activity of these receptors change as the axons grow into different regions, We want to find the molecules that work to control the activity of these receptors as they guide axons along their pathways. We know already that many of the same molecules and receptors in mammals are also present in smaller animals like the fruitfly Drosophila where they do the same job but on a simpler scale. We are using Drosophila to characterise how one of these receptors called Roundabout is regulated in a subset of neurons. We know that Roundabout must be precisely regulated for axons to grow correctly. Although we have identied one key regulator of the Roundabout protein, a protein called Commissureless we do not know precisely how this molecule acts to regulate Roundabout. We plan to use Drosophila as a model system where we can watch exactly how the Roundabout and Commissureless molecules behave in the axons as they grow. This will give us information on the dynamics of the process. We also use Drosophila as a model system to rapidly identify and test the role of further molecules that may act in this process, e.g. those that bind to Commissureless. By using Drosophila we can reduce the need to sacrifice large numbers of mice in research. Once we have found out how these molecules work in Drosophila we will inform other researchers so that the molecules can be tested in other model systems. We need this information both to learn how the nervous system is made and to find out what molecules might be useful in helping us to repair neural injuries or diseases that lead to paralysis or neural degeneration. Unfortunately mammals cannot repair nerve damage that occurs in the brain, our hope is that by identifying the molecules that were originally used to drive and direct nerve cell growth in the embryo we can re-supply these molecules to help nerve cell regeneration in people.
我们依赖于我们的神经系统正常运作,让我们移动,思考,学习,说话和控制我们的身体。要做到这一点,我们所有的神经细胞都必须连接到大脑和它们控制的身体部位。大多数这种“连接在一起”发生在怀孕期间胚胎的生长和发育过程中。要做到这一点,每个神经细胞必须延伸一个很长的过程,称为轴突,在很长的距离和复杂的环境中找到并连接到合适的伙伴。每个轴突通过感知身体不同部位的特定化学物质或分子“线索”来指导何时转向以及以何种方式生长以到达其伴侣。这些信号被生长轴突顶端的“受体”蛋白检测到。这些受体的活性随着轴突生长到不同的区域而改变,我们想找到那些分子,它们在引导轴突沿着它们的通路时,控制这些受体的活性.我们已经知道,哺乳动物中的许多相同分子和受体也存在于较小的动物中,如果蝇,它们在那里做同样的工作,但规模更简单。我们正在用果蝇来研究这些受体中的一种叫做Roundabout的受体是如何在神经元的一个子集中被调节的。我们知道Roundabout必须被精确地调节才能使轴突正确地生长。虽然我们已经确定了Roundabout蛋白的一个关键调节因子,一种称为Commissuerless的蛋白质,但我们并不确切知道这种分子如何调节Roundabout。我们计划使用果蝇作为模型系统,在那里我们可以确切地观察Roundabout和Commissuerless分子在轴突生长时的行为。这将为我们提供有关该过程动态的信息。我们还使用果蝇作为模型系统,以快速识别和测试可能在此过程中起作用的其他分子的作用,例如,那些与Commissueless结合的分子。通过使用果蝇,我们可以减少在研究中牺牲大量小鼠的需要。一旦我们发现这些分子如何在果蝇中起作用,我们将通知其他研究人员,以便这些分子可以在其他模型系统中进行测试。我们需要这些信息来了解神经系统是如何形成的,并找出哪些分子可能有助于我们修复导致瘫痪或神经退化的神经损伤或疾病。不幸的是,哺乳动物无法修复大脑中发生的神经损伤,我们希望通过识别最初用于驱动和指导胚胎神经细胞生长的分子,我们可以重新供应这些分子,以帮助人类神经细胞再生。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mushroom body defect is required in parallel to Netrin for midline axon guidance in Drosophila.
与Netrin平行需要蘑菇体缺陷,以进行果蝇中线轴突指导。
- DOI:10.1242/dev.129684
- 发表时间:2016-03-15
- 期刊:
- 影响因子:0
- 作者:Cate MS;Gajendra S;Alsbury S;Raabe T;Tear G;Mitchell KJ
- 通讯作者:Mitchell KJ
Commissureless regulation of axon outgrowth across the midline is independent of Rab function.
- DOI:10.1371/journal.pone.0064427
- 发表时间:2013
- 期刊:
- 影响因子:3.7
- 作者:van den Brink DM;Banerji O;Tear G
- 通讯作者:Tear G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guy Justin Clive Tear其他文献
Guy Justin Clive Tear的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guy Justin Clive Tear', 18)}}的其他基金
Mechanisms mediating axon outgrowth in the Drosophila CNS
介导果蝇中枢神经系统轴突生长的机制
- 批准号:
BB/K002031/1 - 财政年份:2013
- 资助金额:
$ 44.19万 - 项目类别:
Research Grant
Characterization of novel Drosophila candidate axon guidance molecules
新型果蝇候选轴突引导分子的表征
- 批准号:
BB/F014287/1 - 财政年份:2008
- 资助金额:
$ 44.19万 - 项目类别:
Research Grant
Evaluation of the kinases responsible for tau toxicity
评估负责 tau 毒性的激酶
- 批准号:
G0500261/1 - 财政年份:2006
- 资助金额:
$ 44.19万 - 项目类别:
Research Grant
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
- 批准号:
10727819 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Intracellular signaling mechanisms underlying opioid modulation of pain
阿片类药物调节疼痛的细胞内信号机制
- 批准号:
10607143 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Molecular and cellular mechanisms of HSV-1 assembly and egress
HSV-1 组装和流出的分子和细胞机制
- 批准号:
10842129 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Mechanisms of septin-actin cytoskeletal crosstalk
septin-肌动蛋白细胞骨架串扰的机制
- 批准号:
10677181 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
microRNA-Mediated Mechanisms Essential for the Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA介导的果蝇谷氨酸突触结构可塑性所必需的机制
- 批准号:
10701428 - 财政年份:2022
- 资助金额:
$ 44.19万 - 项目类别:
Elucidating cellular mechanisms underlying neurodegeneration
阐明神经变性的细胞机制
- 批准号:
10647869 - 财政年份:2022
- 资助金额:
$ 44.19万 - 项目类别:
Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
- 批准号:
10649407 - 财政年份:2022
- 资助金额:
$ 44.19万 - 项目类别:
Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
- 批准号:
10363370 - 财政年份:2022
- 资助金额:
$ 44.19万 - 项目类别:
Elucidating cellular mechanisms underlying neurodegeneration
阐明神经变性的细胞机制
- 批准号:
10435954 - 财政年份:2022
- 资助金额:
$ 44.19万 - 项目类别:














{{item.name}}会员




