A platform for rapid and precise DNA module rearrangements in Synthetic Biology

合成生物学中快速、精确 DNA 模块重排的平台

基本信息

  • 批准号:
    BB/K003356/1
  • 负责人:
  • 金额:
    $ 416.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Recently, a new field of science has emerged called Synthetic Biology, which aims to apply engineering principles (for example, the use of modular components, and a "design-build-test-modify" approach to improvement) to the development of biological systems for useful purposes. One major target in Synthetic Biology is the creation of genetically modified microorganisms, to produce valuable chemical substances economically, in high yield and with low environmental impact, or to carry out beneficial chemical transformations such as neutralization of pollutants in waste water. To create these organisms, it is often necessary to introduce a set of new genes (encoded in DNA sequence) and assemble them in specified positions within the organism's long intrinsic DNA sequence ('genome'). The genetic techniques currently available for this 'assembly' task are still quite primitive and inadequate, and gene assembly is considered to be a serious bottleneck in the work leading to the development of useful microorganisms. The first main aim of our proposed research programme is to establish a sophisticated new methodology for this gene assembly process which will achieve a step-change in the speed and efficiency of creating new microorganism strains. For this purpose we will adapt a remarkable group of bacterial enzymes called the serine integrases, whose natural task is to carry out this kind of genetic rearrangement but which have hitherto been underused as tools for Synthetic Biology. We will design rapid, robust and efficient ways of making gene cassettes that can be slotted in (using serine integrases) to any one of a number of different specified positions ('landing pads') in genome DNA. By doing this we can assemble collections of genes to order within a particular microorganism. Furthermore we can choose where to place the genes in the genome and in what order, and replace any individual parts with different versions. This permits much easier optimization of complex genetic systems than is currently possible. Using our new methods we intend to engineer microbial cells to make next-generation biofuels, to make chemicals for the plastics industry by microbial fermentation instead of by using fossil fuel, and to synthesise new antibiotics.A second major target in Synthetic Biology is to make 'smart cells' that can respond in clever ways to external signals (for example, light, high temperature, or a chemical in their environment), or that can 'remember' if they have been exposed to a particular signal and how many times. These smart cells could thus be switched on to perform a useful function only when we need it, or could be programmed to carry out an ordered series of tasks, rather like the wash-rinse-spin-dry cycles of a washing machine. The serine integrase-based tools that we will create for gene assembly lend themselves to the construction of simple yet highly effective intracellular devices for detecting and counting signals. So a second part of our programme is to show the way to the design and construction of these memory devices, and prove that they can work in the way we envisage.
最近,出现了一个新的科学领域,称为合成生物学,其目的是将工程原理(例如,使用模块化组件,以及“设计-构建-测试-修改”的改进方法)应用于生物系统的开发。合成生物学的一个主要目标是创造转基因微生物,以经济、高产和低环境影响的方式生产有价值的化学物质,或进行有益的化学转化,如中和废水中的污染物。为了创造这些生物体,通常需要引入一组新的基因(编码在DNA序列中),并将它们组装在生物体的长内在DNA序列(“基因组”)内的特定位置。目前可用于这种“组装”任务的遗传技术仍然相当原始和不足,基因组装被认为是导致开发有用微生物的工作中的严重瓶颈。我们提出的研究计划的第一个主要目标是为这种基因组装过程建立一种复杂的新方法,这将实现创造新微生物菌株的速度和效率的逐步变化。为了达到这个目的,我们将采用一组被称为丝氨酸整合酶的细菌酶,它们的天然任务是进行这种遗传重排,但迄今为止,它们作为合成生物学的工具还没有得到充分利用。我们将设计快速、稳健和有效的方法来制造基因盒,这些基因盒可以插入(使用丝氨酸整合酶)基因组DNA中许多不同的指定位置(“着陆垫”)中的任何一个。通过这样做,我们可以在特定的微生物中组装基因集合。此外,我们可以选择基因在基因组中的位置和顺序,并用不同的版本替换任何单独的部分。这使得复杂遗传系统的优化比目前可能的要容易得多。利用我们的新方法,我们打算设计微生物细胞来制造下一代生物燃料,通过微生物发酵而不是使用化石燃料来制造塑料工业所需的化学品,并合成新的杀虫剂。合成生物学的第二个主要目标是制造能够以巧妙的方式对外部信号做出反应的“智能细胞”。(例如,光,高温,或其环境中的化学物质),或者可以“记住”他们是否接触过特定的信号以及接触过多少次。因此,这些智能细胞可以只在我们需要的时候才被打开来执行有用的功能,或者可以被编程来执行一系列有序的任务,就像洗衣机的洗涤-漂洗-旋转-干燥循环一样。我们将创建用于基因组装的基于丝氨酸整合酶的工具,用于构建用于检测和计数信号的简单而高效的细胞内装置。因此,我们计划的第二部分是展示这些存储器设备的设计和构建方式,并证明它们可以以我们设想的方式工作。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Budding yeast centromeric DNA and A+T rich bacterial DNA can function as centromeres in the fission yeast Schizosaccharomyces pombe
芽殖酵母着丝粒 DNA 和富含 A T 的细菌 DNA 可以充当裂殖酵母裂殖酵母中的着丝粒
  • DOI:
    10.1101/513150
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbosa A
  • 通讯作者:
    Barbosa A
Site-specific recombinases: Methods and protocols
位点特异性重组酶:方法和方案
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Femi J Olorunniji
  • 通讯作者:
    Femi J Olorunniji
A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1.
  • DOI:
    10.1186/1472-6750-14-51
  • 发表时间:
    2014-05-30
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Fayed B;Younger E;Taylor G;Smith MC
  • 通讯作者:
    Smith MC
Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination.
  • DOI:
    10.1093/nar/gkt1101
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Colloms SD;Merrick CA;Olorunniji FJ;Stark WM;Smith MC;Osbourn A;Keasling JD;Rosser SJ
  • 通讯作者:
    Rosser SJ
Multiplexed integrating plasmids for engineering of the erythromycin gene cluster for expression in Streptomyces spp. and combinatorial biosynthesis.
  • DOI:
    10.1128/aem.02403-15
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Fayed B;Ashford DA;Hashem AM;Amin MA;El Gazayerly ON;Gregory MA;Smith MC
  • 通讯作者:
    Smith MC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marshall Stark其他文献

Tumour necrosis factor
肿瘤坏死因子
  • DOI:
    10.1016/s0140-6736(95)90549-9
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marshall Stark;SarahJane Jones;K. Johansen;L. Blake;R. Shaw;A. Wilson;GordonW. Duff
  • 通讯作者:
    GordonW. Duff
HYPOTHESIS ON FUNCTIONAL INADEQUACY OF THIOREDOXIN AND RELATED SYSTEMS IN PREECLAMPSIA
先兆子痫中硫氧还蛋白及相关系统功能不足的假设
  • DOI:
    10.3109/10641959709069088
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Marshall Stark;L. Neale;S. Woodhead;B. Jasani;K. Johansen;R. W. Shaw
  • 通讯作者:
    R. W. Shaw

Marshall Stark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marshall Stark', 18)}}的其他基金

Elucidation of the rotary mechanism of serine recombinases
丝氨酸重组酶旋转机制的阐明
  • 批准号:
    BB/R008493/1
  • 财政年份:
    2018
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Research Grant
Chimaeric site-specific recombinases for 'genomic surgery'
用于“基因组手术”的嵌合位点特异性重组酶
  • 批准号:
    BB/F021593/1
  • 财政年份:
    2008
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Research Grant
The mechanism of DNA strand exchange by serine recombinases
丝氨酸重组酶进行DNA链交换的机制
  • 批准号:
    BB/E022200/1
  • 财政年份:
    2007
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Research Grant

相似国自然基金

Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
颅骨缺损修补新材料的表面改性研究及个体化快速三维成型
  • 批准号:
    30500520
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
  • 批准号:
    10740025
  • 财政年份:
    2023
  • 资助金额:
    $ 416.07万
  • 项目类别:
Photoactivatable cell sorting to link genetic variation with complex cellular phenotypes
可光激活的细胞分选将遗传变异与复杂的细胞表型联系起来
  • 批准号:
    10539111
  • 财政年份:
    2022
  • 资助金额:
    $ 416.07万
  • 项目类别:
Enabling precise cell-type-specific dissection of orientation and memory circuits in retrosplenial cortex
实现压后皮层定向和记忆电路的精确细胞类型特异性解剖
  • 批准号:
    10446099
  • 财政年份:
    2022
  • 资助金额:
    $ 416.07万
  • 项目类别:
Precise Bone Density Reference Ranges to Reduce Systematic Disparities in Osteoporosis Healthcare for Hispanic Women
精确的骨密度参考范围可减少西班牙裔女性骨质疏松症医疗保健的系统性差异
  • 批准号:
    10372881
  • 财政年份:
    2021
  • 资助金额:
    $ 416.07万
  • 项目类别:
Precise Bone Density Reference Ranges to Reduce Systematic Disparities in Osteoporosis Healthcare for Hispanic Women
精确的骨密度参考范围可减少西班牙裔女性骨质疏松症医疗保健的系统性差异
  • 批准号:
    10744719
  • 财政年份:
    2021
  • 资助金额:
    $ 416.07万
  • 项目类别:
RII Track-2 FEC: Precise Regional Forecasting via Intelligent and Rapid Harnessing of National Scale Hydrometeorological Big Data
RII Track-2 FEC:通过智能快速利用国家规模水文气象大数据进行精确区域预报
  • 批准号:
    2019511
  • 财政年份:
    2020
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Cooperative Agreement
Precise Photo-Manipulation and Rapid Imaging in Developing Organisms
发育中的生物体的精确照片处理和快速成像
  • 批准号:
    RTI-2017-00341
  • 财政年份:
    2016
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Research Tools and Instruments
Precise and Rapid assessment of collaterals using multi-phase CTA in the triage of patients with acute ischemic stroke for IA Therapy (PRove-IT)
使用多相 CTA 精确快速评估侧支循环,对急性缺血性卒中患者进行 IA 治疗分流 (PRove-IT)
  • 批准号:
    319987
  • 财政年份:
    2014
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Salary Programs
Preparation of zeolite nano-film by precise control of crystallization process assisted by microwave rapid heating
微波快速加热辅助精准控制结晶过程制备沸石纳米膜
  • 批准号:
    26420776
  • 财政年份:
    2014
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precise and Rapid assessment of collaterals using multi-phase CTA in the triage of patients with acute ischemic stroke for IV or IA Therapy (PRoVe-IT)
在对急性缺血性卒中患者进行 IV 或 IA 治疗分流时使用多相 CTA 精确快速评估侧支循环 (PRoVe-IT)
  • 批准号:
    291477
  • 财政年份:
    2013
  • 资助金额:
    $ 416.07万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了