Transcriptional regulation in effector-triggered immunity via NB-LRR resistance genes RPS4 & RRS1

通过 NB-LRR 抗性基因 RPS4 对效应子触发免疫的转录调节

基本信息

  • 批准号:
    BB/K003550/1
  • 负责人:
  • 金额:
    $ 40.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Crop plants are subject to diseases caused by various microbes that can cause substantial yield losses. Farmers spray agrochemicals to control disease; this is expensive, requires fuel and labour, and leads to soil compaction. It would be preferable for crops to be disease resistant, so that no fungicide applications are required. More knowledge is required to achieve this goal. Breeders use disease resistance (R) genes for crop improvement; more R genes are continuously needed by breeders, because pathogens can evolve to overcome them. R genes confer recognition of pathogen virulence-promoting molecules (so-called "effectors") that contribute to virulence. R gene durability varies; it is likely that more durable R genes recognize the most indispensable effectors for the pathogen. Plant resistance also involves responses to conserved pathogen molecular patterns- "pattern-triggered immunity (PTI)". Although there is overlap in PTI and R gene-mediated resistance responses, the mechanistic link between them is still completely obscure.For durable resistance in our future crops, we need a deep understanding of pathogen virulence and host defence mechanisms. This requires knowledge of the spectrum of host targets of effectors, of how plant R proteins recognize (directly or indirectly) the presence of effectors, and of how upon recognition, defence mechanisms are activated that result in host plant immunity. Plant R proteins resemble mammalian Nod-like receptors (NLRs) that are involved in mammalian innate immunity; for example, Crohn's disease results from a defect in the human NOD2 gene. Mechanisms of NLR signalling are also incompletely understood. NOD2 and NB-LRR proteins carry similar protein modules, with an N-terminal signalling domain, a central nucleotide-binding (NB) domain and a C-terminal leucine-rich repeat (LRR) domain. The proposed work will help us better understand mechanisms of plant resistance. We will study a fascinating disease resistance locus in the model plant Arabidopsis that confers resistance to two distinct bacterial species that cause either bacterial speck or bacterial wilt, and also confers resistance to a fungal pathogen. This locus contains two different NB-LRR R proteins, RRS1 and RPS4, that are transcribed away from each other, and both of which are required for resistance. RPS4 and RRS1 also carry a so-called TIR domain shared with immune receptors of humans and flies. RRS1 has an additional domain (a "WRKY" domain) that has been shown to bind DNA, and that could regulate expression of genes involved in plant defence. RPS4/RRS1 activates defence upon recognizing AvrRps4 effector protein from bacterial speck, or PopP2 effector protein from bacterial wilt, or the fungal pathogen Colletotrichum higginsianum. How this works is still a mystery. - We wish to understand how RPS4/RRS1 activates expression of genes involved in defence upon recognition of AvrRps4 or PopP2. We will investigate the DNA sequences targeted by the DNA binding domain of RRS1, and compare the corresponding genes to the genes that are induced upon RPS4/RRS1 defence activation, and to genes induced during PTI. In this way we will define the direct targets of RPS4/RRS1 and the genes that when activated result in resistance. This will enable us to build up a picture of the chain of events triggered via R proteins that stop the pathogen from growing.- Once we have all the data from these investigations we will be able to propose and test models for what takes place during defence activation, making this system one of the best understood R gene systems; this knowledge will inform approaches to attempting to broaden the recognition capacity of R genes, to thus enhance their utility and durability.
农作物易受由各种微生物引起的疾病的影响,这些疾病可导致显著的产量损失。农民喷洒农用化学品来控制疾病;这是昂贵的,需要燃料和劳动力,并导致土壤压实。作物最好是抗病的,这样就不需要施用杀真菌剂。需要更多的知识来实现这一目标。育种者利用抗病基因来改良作物;育种者不断需要更多的抗病基因,因为病原体可以进化来克服它们。R基因赋予病原体毒力促进分子(所谓的“效应物”)的识别,这些分子有助于毒力。R基因的持久性各不相同;更持久的R基因可能识别病原体最不可或缺的效应子。植物抗性还涉及对保守的病原体分子模式的响应-“模式触发免疫(PTI)"。尽管PTI和R基因介导的抗性反应存在重叠,但它们之间的机制联系仍然完全不清楚,为了使未来作物获得持久的抗性,我们需要深入了解病原菌的毒力和宿主防御机制。这需要了解效应子的宿主靶标谱,植物R蛋白如何识别(直接或间接)效应子的存在,以及识别后如何激活导致宿主植物免疫的防御机制。植物R蛋白类似于参与哺乳动物先天免疫的哺乳动物Nod样受体(NLR);例如,克罗恩病是由人类NOD 2基因缺陷引起的。NLR信号传导的机制也不完全理解。NOD 2和NB-LRR蛋白携带相似的蛋白模块,具有N-末端信号传导结构域、中央核苷酸结合(NB)结构域和C-末端富含亮氨酸重复(LRR)结构域。这项工作将有助于我们更好地了解植物抗性机制。我们将研究模式植物拟南芥中一个迷人的抗病基因座,该基因座赋予对两种不同细菌的抗性,这两种细菌会导致细菌斑点或细菌枯萎病,并且还赋予对真菌病原体的抗性。该基因座包含两种不同的NB-LRR R蛋白,RRS 1和RPS 4,它们彼此转录,并且两者都是抗性所需的。RPS 4和RRS 1还携带与人类和苍蝇的免疫受体共享的所谓TIR结构域。RRS 1有一个额外的结构域(“WRKY”结构域),已被证明可以结合DNA,并且可以调节参与植物防御的基因的表达。RPS 4/RRS 1在识别来自细菌斑点的AvrRps 4效应蛋白、或来自细菌性枯萎病的PopP 2效应蛋白、或真菌病原体Higginsianum的Colletotrichum后激活防御。这是如何工作的仍然是一个谜。- 我们希望了解RPS 4/RRS 1如何在识别AvrRps 4或PopP 2后激活参与防御的基因的表达。我们将研究RRS 1的DNA结合结构域靶向的DNA序列,并将相应的基因与RPS 4/RRS 1防御激活后诱导的基因以及PTI期间诱导的基因进行比较。通过这种方式,我们将确定RPS 4/RRS 1的直接靶点和激活后导致抗性的基因。这将使我们能够建立一个由R蛋白触发的阻止病原体生长的事件链的图片。-一旦我们从这些调查中获得所有数据,我们将能够提出和测试防御激活过程中发生的模型,使该系统成为最好理解的R基因系统之一;这些知识将为试图扩大R基因识别能力的方法提供信息,从而提高其实用性和耐用性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Golden Gate Modular Cloning Toolbox for Plants
  • DOI:
    10.1021/sb4001504
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Engler, Carola;Youles, Mark;Marillonnet, Sylvestre
  • 通讯作者:
    Marillonnet, Sylvestre
High-resolution Expression Profiling of Selected Gene Sets during Plant Immune Activation
植物免疫激活过程中选定基因集的高分辨率表达谱
  • DOI:
    10.1101/775973
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ding P
  • 通讯作者:
    Ding P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Jones其他文献

City delineation in European applications of LUTI models: review and tests
LUTI 模型在欧洲应用中的城市划分:审查和测试
  • DOI:
    10.1080/01441647.2017.1295112
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    I. Thomas;Jonathan Jones;Geoffrey Caruso;P. Gerber
  • 通讯作者:
    P. Gerber
MR imaging appearances of the female pelvis after trachelectomy.
子宫切除术后女性骨盆的 MR 成像表现。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    A. Sahdev;Jonathan Jones;J. Shepherd;R. Reznek
  • 通讯作者:
    R. Reznek
Damage Evolution and Fracture in SICF/SIC Ceramic Matrix Composite Specimens
SICF/SIC 陶瓷基复合材料样品的损伤演化和断裂
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Newton;Jonathan Jones;M. Bache;Zak Quiney;A. L. Chamberlain
  • 通讯作者:
    A. L. Chamberlain
The influence of phase angle on the TMF crack initiation behaviour and damage mechanisms of a single-crystal superalloy
相位角对单晶高温合金的热机械疲劳裂纹萌生行为及损伤机制的影响
  • DOI:
    10.1016/j.ijfatigue.2025.108887
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Jonathan Jones;Alberto Gonzalez Garcia;Mark Whittaker;Robert Lancaster;Nicholas Barnard;Sean John;Joseph Doyle;Julian Mason-Flucke
  • 通讯作者:
    Julian Mason-Flucke
Stem cell injection in the hindlimb skeletal muscle enhances neurorepair in mice with spinal cord injury.
后肢骨骼肌中注射干细胞可增强脊髓损伤小鼠的神经修复。
  • DOI:
    10.2217/rme.14.38
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Pablo Cruz;D. Pastor;A. Estirado;J. Pacheco;S. Martinez;Jonathan Jones
  • 通讯作者:
    Jonathan Jones

Jonathan Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Jones', 18)}}的其他基金

Combining late blight resistance and better tuber quality with resistance to potato virus Y (PVY) to improve Maris Piper potato
将晚疫病抗性和更好的块茎品质与马铃薯 Y 病毒 (PVY) 抗性相结合,以改良 Maris Piper 马铃薯
  • 批准号:
    BB/W017903/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Novel sources of disease resistance and effector detection from genetic and genomic analysis of Solanum americanum diversity
美洲茄多样性的遗传和基因组分析的抗病性和效应子检测的新来源
  • 批准号:
    BB/W017423/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
New potato varieties with late blight resistance, reduced bruising and improved processing quality
具有抗晚疫病、减少擦伤并提高加工质量的马铃薯新品种
  • 批准号:
    BB/S018832/1
  • 财政年份:
    2019
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Market and regulatory approval assessment of new potato varieties with late blight resistance, reduced bruising and improved processing quality
对具有抗晚疫病、减少擦伤和提高加工质量的马铃薯新品种进行市场和监管审批评估
  • 批准号:
    BB/R021783/1
  • 财政年份:
    2018
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Defining and deploying Rpi gene diversity in S. americanum to control late blight in potato
定义和部署美洲美洲蝽 Rpi 基因多样性以控制马铃薯晚疫病
  • 批准号:
    BB/P021646/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Domain/domain interactions in RPS4/RRS1 immune complex activation by bacterial effectors
细菌效应子激活 RPS4/RRS1 免疫复合物中的结构域/结构域相互作用
  • 批准号:
    BB/M008193/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
New UK potato varieties with late blight and potato cyst nematode resistance, reduced bruising and improved processing quality
英国马铃薯新品种具有晚疫病和马铃薯胞囊线虫抗性,减少擦伤并提高加工质量
  • 批准号:
    BB/M017834/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Gene-for-gene coevolution between Albugo candida and Arabidopsis; mining non-host resistance genes for white rust control in Brassicaceae crops
白假丝酵母和拟南芥之间的基因对基因协同进化;
  • 批准号:
    BB/M003809/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Controlling important diseases in potato by cloning functional NB-LRR-type resistance genes
克隆功能性NB-LRR型抗性基因防治马铃薯重要病害
  • 批准号:
    BB/L009293/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant
Mechanisms of nuclear suppression of host immunity by Arabidopsis downy mildew effectors
拟南芥霜霉病效应子核抑制宿主免疫的机制
  • 批准号:
    BB/K009176/1
  • 财政年份:
    2012
  • 资助金额:
    $ 40.87万
  • 项目类别:
    Research Grant

相似国自然基金

CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
  • 批准号:
    82370798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
  • 批准号:
    82371634
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
精氨酸调控骨髓Tregs稳态在脓毒症骨髓功能障碍中的作用研究
  • 批准号:
    82371770
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
  • 批准号:
    82371150
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
mPFC-VTA-NAc多巴胺能投射调控丙泊酚麻醉—觉醒的机制研究
  • 批准号:
    82371284
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Transcriptional regulation of T cell immunity
T细胞免疫的转录调控
  • 批准号:
    10341041
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional control of NK cell metabolism
NK细胞代谢的转录控制
  • 批准号:
    10548213
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional regulation of T cell immunity
T细胞免疫的转录调控
  • 批准号:
    10008141
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional Control of T Cell Function
T 细胞功能的转录控制
  • 批准号:
    10574535
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional regulation of T cell immunity
T细胞免疫的转录调控
  • 批准号:
    10618783
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional Control of T Cell Function
T 细胞功能的转录控制
  • 批准号:
    10211958
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional Control of T Cell Function
T 细胞功能的转录控制
  • 批准号:
    10376261
  • 财政年份:
    2021
  • 资助金额:
    $ 40.87万
  • 项目类别:
Transcriptional and metabolic regulation of Treg cell specification for the control of allergic airway disease
Treg 细胞规范的转录和代谢调节用于控制过敏性气道疾病
  • 批准号:
    10195021
  • 财政年份:
    2020
  • 资助金额:
    $ 40.87万
  • 项目类别:
Chromatin and transcriptional regulatory factors that initiate and stabilize memory CD8 T cell development
启动和稳定记忆 ​​CD8 T 细胞发育的染色质和转录调节因子
  • 批准号:
    10488588
  • 财政年份:
    2020
  • 资助金额:
    $ 40.87万
  • 项目类别:
Chromatin and transcriptional regulatory factors that initiate and stabilize memory CD8 T cell development
启动和稳定记忆 ​​CD8 T 细胞发育的染色质和转录调节因子
  • 批准号:
    10683275
  • 财政年份:
    2020
  • 资助金额:
    $ 40.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了