A GPU-based high performance system for discovering consensus domain architecture and functional annotation of protein families
基于 GPU 的高性能系统,用于发现蛋白质家族的共识域架构和功能注释
基本信息
- 批准号:BB/K004131/1
- 负责人:
- 金额:$ 14.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The list of organisms with completed genome sequence is continuously growing and this has led to the identification of thousands of genes whose function is still unknown. These genes could potentially be involved in important biological cell functions and could represent important targets for diagnostic and pharmacogenomics studies and be of industrial and agronomical importance. A major undertaking for biology is therefore that of identifying the function of these uncharacterized genes on a genomic scale. The challenge for bioinformatics is then to develop algorithms that, given a gene, can predict a hypothesis for its function.Comparisons of sequences from complete genomes have revealed that gene duplication, divergence and rearrangement are predominant mechanisms that drive the expansion of the set of proteins of a given organism during evolution. This means that proteins can be grouped into families, where members are likely to perform similar functions. The identification of these protein families is therefore central as it can provide important clues for the function of proteins.Proteins are often composed of several domains. A domain is segment of protein sequence that can evolve independently of the rest of the protein chain. Each domain forms a compact three-dimensional structure and it can appear in a variety of different proteins. Protein function depends on the mutual interplay between the distinct domains and the links between them. In other words, protein function depends on the domain architecture of the protein.Therefore we would like to have a tool that can group proteins into families according to their architecture: all proteins with the same architecture should belong to the same group. The development of such a tool is exactly the goal of this project. Moreover the tool that we plan here will also be able to suggest possible functional roles for the various architectures.Our tool is aimed at working on very large sets of proteins. The amount of calculations for problems of this size is only feasible by taking advantage of the latest advances in graphical processing unit (GPU) technology. Modern GPUs are very efficient for graphics but their highly parallel structure makes them extremely effective for algorithms where processing of large blocks of data is done in parallel - even more effective than general-purpose CPUs. The use of GPU technology will allow us to create a web application that will be used by scientists to obtain the architectures for very large set of proteins together with possible functional roles for the various architectures. Importantly, we shall periodically run our system on the major genomes available and we will thus be able to through our web server architectures and relative annotation for all the proteins in those genomes. All these web services will be made freely available to the scientific community.
具有完整基因组序列的生物体的名单不断增长,这导致了数千个功能仍然未知的基因的鉴定。这些基因可能潜在地参与重要的生物细胞功能,并且可能代表诊断和药物基因组学研究的重要靶标,并且具有工业和农学重要性。因此,生物学的一项主要任务是在基因组尺度上鉴定这些未表征基因的功能。生物信息学面临的挑战是开发算法,给定一个基因,可以预测其功能的假设。来自完整基因组的序列比较显示,基因复制,分歧和重排是在进化过程中驱动给定生物体的蛋白质组扩展的主要机制。这意味着蛋白质可以分为家族,其中成员可能执行类似的功能。因此,这些蛋白质家族的鉴定是至关重要的,因为它可以为蛋白质的功能提供重要的线索。蛋白质通常由几个结构域组成。结构域是蛋白质序列的一段,可以独立于蛋白质链的其余部分进化。每个结构域形成一个紧凑的三维结构,它可以出现在各种不同的蛋白质中。蛋白质的功能取决于不同结构域之间的相互作用以及它们之间的联系。换句话说,蛋白质的功能取决于蛋白质的结构域。因此,我们希望有一个工具,可以根据蛋白质的结构将其分组为家族:所有具有相同结构的蛋白质应该属于同一组。开发这样一个工具正是本项目的目标。此外,我们在这里计划的工具也将能够为各种架构提出可能的功能角色。我们的工具旨在研究非常大的蛋白质组。只有利用图形处理单元(GPU)技术的最新进展,才能解决这种规模的问题。现代GPU对于图形非常高效,但其高度并行的结构使它们对于并行处理大块数据的算法非常有效-甚至比通用CPU更有效。GPU技术的使用将使我们能够创建一个Web应用程序,科学家将使用该应用程序来获得非常大的蛋白质组的架构以及各种架构的可能功能角色。重要的是,我们将定期在可用的主要基因组上运行我们的系统,因此我们将能够通过我们的Web服务器架构和这些基因组中所有蛋白质的相关注释。所有这些网络服务都将免费提供给科学界。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A method for comparing multiple imputation techniques: A case study on the U.S. national COVID cohort collaborative.
- DOI:10.1016/j.jbi.2023.104295
- 发表时间:2023-03
- 期刊:
- 影响因子:4.5
- 作者:Casiraghi, Elena;Wong, Rachel;Hall, Margaret;Coleman, Ben;Notaro, Marco;Evans, Michael D.;Tronieri, Jena S.;Blau, Hannah;Laraway, Bryan;Callahan, Tiffany J.;Chan, Lauren E.;Bramante, Carolyn T.;Buse, John B.;Moffitt, Richard A.;Sturmer, Til;Johnson, Steven G.;Shao, Yu Raymond;Reese, Justin;Robinson, Peter N.;Paccanaro, Alberto;Valentini, Giorgio;Huling, Jared D.;Wilkins, Kenneth J.
- 通讯作者:Wilkins, Kenneth J.
LanDis: the disease landscape explorer
- DOI:10.1038/s41431-023-01511-9
- 发表时间:2024-01-10
- 期刊:
- 影响因子:5.2
- 作者:Caniza,Horacio;Caceres,Juan J.;Paccanaro,Alberto
- 通讯作者:Paccanaro,Alberto
Combining interactomes from multiple organisms: A case study on human-mouse
结合多种生物体的相互作用组:人鼠案例研究
- DOI:10.1109/clei.2016.7833324
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Caceres J
- 通讯作者:Caceres J
A network medicine approach to quantify distance between hereditary disease modules on the interactome.
- DOI:10.1038/srep17658
- 发表时间:2015-12-03
- 期刊:
- 影响因子:4.6
- 作者:Caniza H;Romero AE;Paccanaro A
- 通讯作者:Paccanaro A
Computational selection of transcriptomics experiments improves Guilt-by-Association analyses.
- DOI:10.1371/journal.pone.0039681
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Bhat P;Yang H;Bögre L;Devoto A;Paccanaro A
- 通讯作者:Paccanaro A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Paccanaro其他文献
Spectral clustering of protein sequences
蛋白质序列的光谱聚类
- DOI:
10.1109/ijcnn.2003.1224064 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Alberto Paccanaro;C. Chennubhotla;James A. Casbon;M. Saqi - 通讯作者:
M. Saqi
Subclonal mutation selection in mouse lymphomagenesis identifies known cancer loci and suggests novel candidates
小鼠淋巴瘤发生中的亚克隆突变选择确定了已知的癌症位点并提出了新的候选基因
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:16.6
- 作者:
Philip Webster;Joanna C. Dawes;H. Dewchand;K. Takács;Barbara Iadarola;B. J. Bolt;Juan J. Caceres;Jakub Kaczor;G. Dharmalingam;Marian H. Dore;L. Game;Thomas Adejumo;James Elliott;K. Naresh;Mohammad M. Karimi;Katerina Rekopoulou;Ge Tan;Alberto Paccanaro;A. Uren - 通讯作者:
A. Uren
Inferring protein-protein interactions using interaction network topologies
使用相互作用网络拓扑推断蛋白质-蛋白质相互作用
- DOI:
10.1109/ijcnn.2005.1555823 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Alberto Paccanaro;Valery Trifonov;Haiyuan Yu;M. Gerstein - 通讯作者:
M. Gerstein
Alberto Paccanaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alberto Paccanaro', 18)}}的其他基金
Development of a graph-theoretic approach to predict protein function by integrating large scale heterogeneous data
开发通过整合大规模异质数据来预测蛋白质功能的图论方法
- 批准号:
BB/F00964X/1 - 财政年份:2008
- 资助金额:
$ 14.61万 - 项目类别:
Research Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
- 批准号:
EP/Z001013/1 - 财政年份:2025
- 资助金额:
$ 14.61万 - 项目类别:
Fellowship
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
- 批准号:
23K26368 - 财政年份:2024
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 14.61万 - 项目类别:
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 14.61万 - 项目类别:
Continuing Grant
CAREER: Performance-Based Fire Design for Cold-Formed Steel Structures
职业:冷弯型钢结构基于性能的消防设计
- 批准号:
2237623 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Standard Grant
Development and validation of a composite measure of physical function using a battery of performance-based measures: A longitudinal analyses of the Canadian Longitudinal Study on Aging
使用一系列基于表现的测量方法开发和验证身体机能的综合测量方法:加拿大老龄化纵向研究的纵向分析
- 批准号:
499193 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Operating Grants
High Performance Iron Germanide-Based Materials for Energy Harvesting Applications
用于能量收集应用的高性能锗化铁基材料
- 批准号:
22KF0390 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
- 批准号:
10699200 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别: