The auxetic nucleus: nuclear mechanotransduction and its role in regulating stem cell differentiation

拉胀核:核力转导及其在调节干细胞分化中的作用

基本信息

  • 批准号:
    BB/M008827/1
  • 负责人:
  • 金额:
    $ 76.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Embryonic stem cells (ESCs) self-renew in a state of pluripotency, meaning they can give rise to all tissue types; therefore, they are very promising for regenerative medicine. We recently discovered they have a very interesting and surprising property. Just as an ESC begins to leave behind this state of pluripotency - i.e. as it differentiates - their nucleus, the large structure in the cell that houses all the genetic material, becomes 'auxetic'. Auxeticity is a property that refers to the response of a material under mechanical stress. Consider that, under mechanical stress, a tensed rubber band becomes thinner, and when a ball is compressed it becomes fatter: this is what most materials do. However, an auxetic material, in contrast to a rubber band, becomes fatter when stretched, and thinner when compressed. This property is highly unique even compared to other cell nuclei, but we found one other cell type that manifests this same property in its nucleus. That cell type is the oligodendrocyte progenitor cell (OPC), which is similar to ESCs in that they are a self-renewing stem cell. In development, OPCs give rise to oligodendrocytes (the myelinating cell of the central nervous system) and in the adult is responsible for generating new oligodendrocytes following demyelination (a unique and clinically important neural regenerative process called remyelination). Both of these stem cells are keys to regeneration, and we believe our studies will shed new light on how they work. Auxeticity has two important repercussions for the ESC/OPC nucleus. First, it has implications for structure because auxeticity arises from unique structural characteristics (such as the auxetic honeycomb: see https://www.youtube.com/watch?v=vdkYuLsT7Sc). We will use a combination of biotechnology, biological and physics techniques to understand what nuclear structural properties are responsible for auxeticity; in finding this, we will better understand how nuclear structure changes during differentiation, and how these changes might facilitate differentiation. The second repercussion is that auxeticity yields massive volume fluctuations with mechanical stress. Consider that an auxetic nucleus gets fatter when stretched, and thinner when compressed, and it is clear that, unlike most materials, it changes volume considerably with mechanical stress. This, in turn, will cause a large flux of soluble molecules across the nucleus with mechanical stress. Given that, particularly in tissue, stem cells undergo frequent and significant mechanical stress, we believe this is important for how differentiation is regulated. The reason for this is that there are a number of signaling molecules that are necessary for differentiation that are kept outside the nucleus before ESCs or OPCs differentiate. When the mechanically-stressed nucleus significantly swells (we see volume increases in the nucleus of up to 50% with relatively small forces), that will force some of these molecules into the nucleus where they can find their targets. We propose that in this way, auxeticity causes the nucleus to be like a pump for moving molecules across its membrane. We will use the biotechnology we develop to apply mechanical stress to the cells to observe these volume fluctuations and concurrent movement of molecules across the nuclear membrane. We will also use biological techniques to analyse the targets of these molecules to determine if this auxetic effect is causing functional changes in ESCs/OPCs. The research will impact biotechnology, regenerative medicine and stem cell biology. It will bring to bear new insight into how stem cells work, and how we can investigate them. Using our connections in stem cells, biophysics, and biotechnology, we will widely circulate our results, generating impact in several academic disciplines. Given its high potential for impact and its highly cross-disciplinary nature, the proposed research is highly suited for the portfolio of the BBSRC.
胚胎干细胞(ESC)在多能性状态下自我更新,这意味着它们可以产生所有组织类型;因此,它们在再生医学方面非常有前途。我们最近发现它们有一个非常有趣和令人惊讶的特性。就像ESC开始离开这种多能性状态一样-即当它分化时-它们的细胞核,细胞中容纳所有遗传物质的大型结构,变得“生长”。弹性是指材料在机械应力下的响应的性质。考虑一下,在机械应力下,拉紧的橡皮筋变得更薄,而当球被压缩时,它变得更胖:这是大多数材料所做的。然而,与橡皮筋相反,拉胀材料在拉伸时变得更厚,并且在压缩时变得更薄。即使与其他细胞核相比,这种特性也是非常独特的,但我们发现另一种细胞类型在其细胞核中表现出相同的特性。这种细胞类型是少突胶质细胞祖细胞(OPC),它类似于ESCs,因为它们是一种自我更新的干细胞。在发育过程中,OPC产生少突胶质细胞(中枢神经系统的髓鞘形成细胞),并且在成人中负责在脱髓鞘后产生新的少突胶质细胞(一种独特且临床上重要的神经再生过程,称为髓鞘再生)。这两种干细胞都是再生的关键,我们相信我们的研究将为它们如何工作提供新的线索。对ESC/OPC核心来说,遗传性有两个重要的影响。首先,它对结构有影响,因为拉胀性来自于独特的结构特征(如拉胀蜂窝:见https://www.youtube.com/watch? v=vdkYuLsT7Sc)。我们将使用生物技术,生物学和物理学技术相结合,以了解什么样的核结构特性是负责生长;在找到这一点,我们将更好地了解核结构如何在分化过程中变化,以及这些变化如何可能促进分化。第二个影响是,在机械应力作用下,膨胀性产生了巨大的体积波动。考虑到拉胀核在拉伸时变胖,在压缩时变薄,很明显,与大多数材料不同,它的体积随着机械应力而显著变化。这反过来又会导致大量可溶性分子在机械应力作用下穿过细胞核。鉴于干细胞,特别是在组织中,会经历频繁和显著的机械应力,我们认为这对于如何调节分化很重要。这是因为在ESC或OPCs分化之前,有许多分化所必需的信号分子被保留在细胞核外。当受到机械应力的细胞核显著膨胀时(我们看到细胞核的体积增加了50%,力相对较小),这将迫使其中一些分子进入细胞核,在那里它们可以找到它们的目标。我们提出,在这种方式下,膨胀性导致细胞核就像一个泵,使分子穿过细胞膜。我们将使用我们开发的生物技术对细胞施加机械应力,以观察这些体积波动和分子穿过核膜的同时运动。我们还将使用生物技术来分析这些分子的靶点,以确定这种拉胀效应是否导致ESCs/OPCs的功能变化。这项研究将影响生物技术、再生医学和干细胞生物学。它将为干细胞如何工作以及我们如何研究它们带来新的见解。利用我们在干细胞,生物物理学和生物技术方面的联系,我们将广泛传播我们的成果,在多个学科产生影响。鉴于其影响力和高度跨学科的性质,拟议的研究非常适合BBSRC的投资组合。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Chalut其他文献

Light Scattering Detects Changes In Subcellular Structure And Organization With Connections To Cell Function
  • DOI:
    10.1016/j.bpj.2008.12.1478
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin Chalut;Karina Kulangara;Kam Leong;Adam Wax
  • 通讯作者:
    Adam Wax
Mechanical Signaling in Stem Cells: Self-Renewal and Ageing
  • DOI:
    10.1016/j.bpj.2016.11.028
  • 发表时间:
    2017-02-03
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin Chalut
  • 通讯作者:
    Kevin Chalut
3175 – TUNEABLE HYDROGELS AS A NEW TOOL TO EXPLORE EXTRACELLULAR MATRIX PROTEINS IN MALIGNANCY
  • DOI:
    10.1016/j.exphem.2022.07.231
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Rubio Lara;Daniel Bode;Grace Boyd;Lilia Cabrera-Cosme;Kevin Chalut;Monika Gonka;Andrew Hodgson;David Kent
  • 通讯作者:
    David Kent
La réponse inhabituelle des noyaux de cellules souches embryonnaires aux forces mécaniques
细胞胚胎和机械力量的居住反应
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandre J. Kabla;Kevin Chalut
  • 通讯作者:
    Kevin Chalut
LBP-34 - Modelling intrahepatic bile duct morphogenesis in vitro using synthetic hydrogels
  • DOI:
    10.1016/s0168-8278(23)00614-1
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ludovic Vallier;Iona Thelwall;Kevin Chalut;Carola Maria Morell;Lucia Cabriales
  • 通讯作者:
    Lucia Cabriales

Kevin Chalut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Chalut', 18)}}的其他基金

Re-defining the paradigm of X-chromosome inactivation
重新定义X染色体失活的范式
  • 批准号:
    MR/R017735/1
  • 财政年份:
    2018
  • 资助金额:
    $ 76.86万
  • 项目类别:
    Research Grant
Deciphering and overcoming epigenetic erosion at imprinted loci in mouse and human naive pluripotent stem cells
破译并克服小鼠和人类幼稚多能干细胞印记位点的表观遗传侵蚀
  • 批准号:
    BB/R018588/1
  • 财政年份:
    2018
  • 资助金额:
    $ 76.86万
  • 项目类别:
    Research Grant
Developing biomimetic matrices for enhanced cellular reprogramming
开发仿生基质以增强细胞重编程
  • 批准号:
    MR/M011089/1
  • 财政年份:
    2015
  • 资助金额:
    $ 76.86万
  • 项目类别:
    Research Grant

相似国自然基金

弓状核介导慢性疼痛引起动机下降的神经环路机制及rTMS干预研究
  • 批准号:
    82371536
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
  • 批准号:
    31970656
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
  • 批准号:
    31872221
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
气体信号分子硫化氢对腰椎间盘髓核细胞凋亡影响的实验研究
  • 批准号:
    81071504
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
小胶质细胞转核P2X7受体介导的生物学效应的研究
  • 批准号:
    30970918
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
前庭内侧核内GABA参与晕动症时心血管功能失调的作用机制
  • 批准号:
    30600339
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针刺的双向调节效应研究
  • 批准号:
    30472244
  • 批准年份:
    2004
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目
5-羟色胺对引发晕动症的前庭信息发挥调节作用的神经机制
  • 批准号:
    30470562
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
耳-迷走神经反射和耳穴作用途径及机理
  • 批准号:
    30472133
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
  • 批准号:
    10749672
  • 财政年份:
    2024
  • 资助金额:
    $ 76.86万
  • 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Mechanisms of Serrated Colon Tumor Suppression
锯齿状结肠肿瘤抑制机制
  • 批准号:
    10681608
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Develop an engineered Cas effector for in vivo cell-targeted delivery in the eye to treat autosomal dominant BEST disease
开发工程化 Cas 效应器,用于眼内体内细胞靶向递送,以治疗常染色体显性 BEST 疾病
  • 批准号:
    10668167
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
  • 批准号:
    10668027
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Acquisition of a Bruker 11.7T/16cm Preclinical Scanner for Novel MRI/MRSI Studies
采购布鲁克 11.7T/16cm 临床前扫描仪用于新型 MRI/MRSI 研究
  • 批准号:
    10630511
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
  • 批准号:
    10639551
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
  • 批准号:
    10762273
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Unexpected roles of phosphoinositides in the nucleus
磷酸肌醇在细胞核中的意外作用
  • 批准号:
    10711033
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
Endothelial biomechanics in vascular aging
血管老化中的内皮生物力学
  • 批准号:
    10804883
  • 财政年份:
    2023
  • 资助金额:
    $ 76.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了