Regulation of carbon flux through the glyoxylate shunt in the opportunistic pathogen, Pseudomonas aeruginosa.
通过机会性病原体铜绿假单胞菌中的乙醛酸分流调节碳通量。
基本信息
- 批准号:BB/M019411/1
- 负责人:
- 金额:$ 43.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last two decades have seen an increasing realisation - at both national and international level - that we urgently need to identify new strategies for controlling and managing bacterial infections. Due to widespread antibiotic use and abuse, the "golden age" of antibiotics is over; resistance to most classes of antibiotics is on the rise, and at the same time, fewer new antibiotics are emerging out of the R&D pipeline. In particular, antimicrobial agents that target the so-called "Gram-negative" bacteria are desperately needed. These bacteria are hard to fight because they have TWO membrane-like layers separating their interior from the environment (this double layer makes drug penetration difficult) and they also often express several "multi-drug efflux pumps" which, as their name suggests, export any antibiotics that do happen to get into the cell before they have a chance to have any effect. One particularly dreaded Gram-negative "superbug" is the opportunistic pathogen, Pseudomonas aeruginosa (hereafter, "PA"). This bacterium causes devastating infections that can kill in a matter of days. Worryingly, antibiotic resistance is also rampant in PA populations. One reason why PA causes so much tissue damage during infections is because it has a mechanism (called "Type 3 Secretion", or T3S) that allows it to secrete toxic protein molecules directly into host cells, thereby killing them. As little as a single molecule of injected toxin is all that is required to kill the host cell, making this the most potent virulence factor in the PA arsenal. T3S activity can be stimulated by simple physical contact between the bacterium and the host cell. However, recent work has also shown that T3S is also turned on when the bacterium senses that it is running out of oxygen (as is also the case at the site of many infections). Unexpectedly, the "signal" telling the cell to activate T3S in the absence of oxygen turned out to be a metabolic one, generated by a biochemical pathway called "the glyoxylate shunt". So, what is the glyoxylate shunt? In bacteria such as PA, most types of food molecule can be used to either generate energy or to generate biomass. However, a problem arises with certain foodstuffs - especially simple molecules like acetate or molecules which are broken down to yield acetate (e.g., fatty acids). Normally, the central metabolic hub of the cell (the "TCA cycle") takes the 2 carbon atoms in each acetate molecule and fully oxidizes these to yield 2 molecules of carbon dioxide. The dividend is that energy is produced. However, it also means that all the carbon that goes in to the TCA cycle is lost as CO2 - no carbon can become "fixed" for incorporation into biomass. To circumvent this, bacteria have evolved a special "shunt" to bypass the CO2 evolving steps of the cycle, thereby "saving" carbon atoms and allowing these to be re-routed to generate biomass. Without the glyoxylate shunt, PA therefore fails to grow on many foodstuffs, and mutants defective in the glyoxylate shunt are unable to cause disease in infection models. The reasons for this are still not clear, although diminished T3S and metabolic insufficiency are both probable contributors. Consequently, the enzymes of the glyoxylate shunt are widely accepted as potential targets for the development of antimicrobial compounds. The problem is that although the glyoxylate shunt has been well-characterized in certain model organisms, the TCA cycle/glyoxylate shunt branchpoint in PA has a different architecture and is clearly regulated in a very different manner. Indeed, nothing is known about how flux is regulated through the glyoxylate shunt in PA, in spite of its obvious role in controlling fitness and virulence. The aim of the proposed work is redress this issue by generating a working flux model, allowing us to explore the best ways(s) of disrupting metabolism through the glyoxylate shunt, and to examine the impact of this on T3S.
过去二十年,人们越来越认识到——无论是在国家还是国际层面——我们迫切需要确定控制和管理细菌感染的新策略。由于抗生素的广泛使用和滥用,抗生素的“黄金时代”已经结束;对大多数类别抗生素的耐药性正在上升,与此同时,研发管线中出现的新抗生素越来越少。特别是,迫切需要针对所谓“革兰氏阴性”细菌的抗菌剂。这些细菌很难对抗,因为它们有两层膜状层将其内部与环境分开(这种双层使药物渗透变得困难),而且它们还经常表达几个“多药物外排泵”,顾名思义,这些泵在有机会产生任何效果之前将碰巧进入细胞的任何抗生素排出体外。一种特别可怕的革兰氏阴性“超级细菌”是机会性病原体,铜绿假单胞菌(以下简称“PA”)。这种细菌会引起毁灭性的感染,几天之内就会导致死亡。令人担忧的是,抗生素耐药性在 PA 人群中也很猖獗。 PA 在感染过程中造成如此多的组织损伤的一个原因是它有一种机制(称为“3 型分泌”或 T3S),使其能够将有毒蛋白质分子直接分泌到宿主细胞中,从而杀死它们。只需注入一个单分子毒素即可杀死宿主细胞,这使其成为 PA 武器库中最有效的毒力因子。 T3S 活性可以通过细菌和宿主细胞之间简单的物理接触来刺激。然而,最近的研究还表明,当细菌感觉到氧气耗尽时(许多感染部位的情况也是如此),T3S 也会被打开。出乎意料的是,告诉细胞在缺氧情况下激活 T3S 的“信号”竟然是一种代谢信号,由一种名为“乙醛酸分流”的生化途径产生。那么,什么是乙醛酸分流?在 PA 等细菌中,大多数类型的食物分子都可用于产生能量或产生生物质。然而,某些食品会出现问题,尤其是简单的分子,如乙酸盐或分解产生乙酸盐的分子(例如脂肪酸)。通常,细胞的中央代谢中心(“TCA 循环”)会吸收每个乙酸盐分子中的 2 个碳原子,并将其完全氧化,产生 2 个二氧化碳分子。红利是产生能量。然而,这也意味着进入 TCA 循环的所有碳都会以二氧化碳的形式损失——没有碳可以“固定”以纳入生物质中。为了规避这一点,细菌进化出了一种特殊的“分流器”来绕过循环中二氧化碳的释放步骤,从而“节省”碳原子并允许它们重新路由以产生生物质。如果没有乙醛酸分流,PA 就无法在许多食品上生长,并且乙醛酸分流缺陷的突变体无法在感染模型中引起疾病。尽管 T3S 减少和代谢不足都是可能的原因,但其原因仍不清楚。因此,乙醛酸分流酶被广泛认为是开发抗菌化合物的潜在靶标。问题在于,尽管乙醛酸分流在某些模式生物中已得到很好的表征,但 PA 中的 TCA 循环/乙醛酸分流分支点具有不同的结构,并且明显以非常不同的方式进行调节。事实上,尽管 PA 中的乙醛酸分流在控制适应性和毒力方面发挥着明显作用,但我们对如何通过 PA 中的乙醛酸分流来调节通量一无所知。拟议工作的目的是通过生成工作通量模型来解决这个问题,使我们能够探索通过乙醛酸分流破坏新陈代谢的最佳方法,并检查这对 T3S 的影响。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure, Function and Regulation of a Second Pyruvate Kinase Isozyme in Pseudomonas aeruginosa.
- DOI:10.3389/fmicb.2021.790742
- 发表时间:2021
- 期刊:
- 影响因子:5.2
- 作者:Abdelhamid Y;Wang M;Parkhill SL;Brear P;Chee X;Rahman T;Welch M
- 通讯作者:Welch M
Structure-Based Discovery of Lipoteichoic Acid Synthase Inhibitors.
- DOI:10.1021/acs.jcim.2c00300
- 发表时间:2022-05-23
- 期刊:
- 影响因子:5.6
- 作者:Wezen, Xavier Chee;Chandran, Aneesh;Eapen, Rohan Sakariah;Waters, Elaine;Bricio-Moreno, Laura;Tosi, Tommaso;Dolan, Stephen;Millership, Charlotte;Kadioglu, Aras;Grundling, Angelika;Itzhaki, Laura S.;Welch, Martin;Rahman, Taufiq
- 通讯作者:Rahman, Taufiq
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Welch其他文献
Staphylococcus aureus associated with surgical site infections in Western Kenya reveals genomic hotspots for pathogen evolution
与肯尼亚西部手术部位感染相关的金黄色葡萄球菌揭示了病原体进化的基因组热点
- DOI:
10.1099/acmi.0.000734.v4 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nyabera Nicholas Mogoi;Anthony Wawire Sifuna;Patrick Kirsteen Okoth;Oleg Reva;Rose Malaba;Ruth Negesa;Kuloba Peter Nyongesa;Kombo Ezra Osoro;Martin Welch - 通讯作者:
Martin Welch
Mastering the Chemical Language of Bacteria
- DOI:
10.1016/j.chembiol.2009.09.006 - 发表时间:
2009-09-25 - 期刊:
- 影响因子:
- 作者:
Warren R.J.D. Galloway;James T. Hodgkinson;Martin Welch;David R. Spring - 通讯作者:
David R. Spring
Evolution and host-specific adaptation of Pseudomonas aeruginosa
铜绿假单胞菌的进化和宿主特异性适应
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:56.9
- 作者:
Aaron Weimann;Adam M. Dinan;Christopher Ruis;Audrey Bernut;S. Pont;Karen Brown;Judy Ryan;Lúcia Santos;Louise Ellison;Emem Ukor;A. P. Pandurangan;Sina Krokowski;Tom L. Blundell;Martin Welch;B. Blane;Kim Judge;Rachel Bousfield;Nicholas Brown;Josephine M. Bryant;I. Kukavica;G. Rampioni;L. Leoni;Patrick T. Harrison;Sharon J. Peacock;Nicholas R. Thomson;Jeff Gauthier;J. Fothergill;Roger C. Levesque;Julian Parkhill;R. Floto - 通讯作者:
R. Floto
Mutations in emmexT/em bypass the stringent response dependency of virulence in emPseudomonas aeruginosa/em
emmexT/em 中的突变绕过了铜绿假单胞菌 em 中毒力的严格应答依赖性。
- DOI:
10.1016/j.celrep.2024.115079 - 发表时间:
2025-01-28 - 期刊:
- 影响因子:6.900
- 作者:
Wendy Figueroa;Adrian Cazares;Eleri A. Ashworth;Aaron Weimann;Aras Kadioglu;R. Andres Floto;Martin Welch - 通讯作者:
Martin Welch
Pseudomonas aeruginosa acyl-CoA dehydrogenases and structure-guided inversion of their substrate specificity
铜绿假单胞菌酰基辅酶 A 脱氢酶及其底物特异性的结构引导反转
- DOI:
10.1038/s41467-025-57532-z - 发表时间:
2025-03-08 - 期刊:
- 影响因子:15.700
- 作者:
Meng Wang;Prasanthi Medarametla;Thales Kronenberger;Tomas Deingruber;Paul Brear;Wendy Figueroa;Pok-Man Ho;Thomas Krueger;James C. Pearce;Antti Poso;James G. Wakefield;David R. Spring;Martin Welch - 通讯作者:
Martin Welch
Martin Welch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Welch', 18)}}的其他基金
Loving the poison: molecular basis for metabolism of the widely-used food preservative, propionate in Pseudomonas aeruginosa.
热爱毒药:铜绿假单胞菌中广泛使用的食品防腐剂丙酸盐代谢的分子基础。
- 批准号:
BB/R005435/1 - 财政年份:2017
- 资助金额:
$ 43.83万 - 项目类别:
Research Grant
Low molecular weight inhibitors of (p)ppGpp-dependent virulence factor production by Erwinia carotovora subsp. atroseptica
胡萝卜软腐欧文氏菌亚种 (p)ppGpp 依赖性毒力因子产生的低分子量抑制剂。
- 批准号:
BB/G015171/1 - 财政年份:2009
- 资助金额:
$ 43.83万 - 项目类别:
Research Grant
Mass spectrometry-based 'omic mining through the biostrata of Pseudomonas aeruginosa colonies and biofilms
通过铜绿假单胞菌菌落和生物膜的生物地层进行基于质谱的“组学挖掘”
- 批准号:
BB/F01581X/1 - 财政年份:2008
- 资助金额:
$ 43.83万 - 项目类别:
Research Grant
相似国自然基金
一碳代谢(One carbon metabolism)介导上调的 PD1/PDL1 驱动
肿瘤免疫逃逸
- 批准号:2024JJ9491
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维碳纳米材料(nano-carbon@ZSM-5)的制备及应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
理论预言的三维碳同素异构体T-carbon的制备及其物性的实验深入研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
绿色热量运动驱动的G-Carbon系统碳生产力发展研究
- 批准号:51976085
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
碳-铁-微生物对滩涂围垦稻田土壤团聚体形成和稳定的调控机制
- 批准号:41977088
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
金属有机框架ZIF-67基Co@Carbon膜催化反应器设计、制备及其用于丙烷催化脱氢反应过程强化研究
- 批准号:21878100
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
乳腺癌发生发展过程中巨噬细胞glucose-serine-glycine-1-carbon代谢异常对肿瘤恶性进展的影响及其分子机制的研究
- 批准号:81730077
- 批准年份:2017
- 资助金额:290.0 万元
- 项目类别:重点项目
多级g-C3N4/Carbon复合物的合成及可见光光催化研究
- 批准号:51402147
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
急性一氧化碳中毒后迟发性脑病易感基因的筛选
- 批准号:81141071
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
循环二氧化碳水平升高导致延迟钠电流增加的致心律失常作用及其发生机制的研究
- 批准号:81170156
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Connecting TCA cycle flux and epigenetic regulation of hematopoiesis
连接 TCA 循环通量和造血的表观遗传调控
- 批准号:
10397700 - 财政年份:2020
- 资助金额:
$ 43.83万 - 项目类别:
Connecting TCA cycle flux and epigenetic regulation of hematopoiesis
连接 TCA 循环通量和造血的表观遗传调控
- 批准号:
10383136 - 财政年份:2020
- 资助金额:
$ 43.83万 - 项目类别:
Carbon flux and its regulation in metabolic networks
代谢网络中的碳通量及其调节
- 批准号:
FT120100200 - 财政年份:2012
- 资助金额:
$ 43.83万 - 项目类别:
ARC Future Fellowships
Regulation of Pulmonary Vascular Tone During Cirrhosis
肝硬化期间肺血管张力的调节
- 批准号:
6773866 - 财政年份:2001
- 资助金额:
$ 43.83万 - 项目类别:
Regulation of Pulmonary Vascular Tone During Cirrhosis
肝硬化期间肺血管张力的调节
- 批准号:
6527443 - 财政年份:2001
- 资助金额:
$ 43.83万 - 项目类别:
Regulation of Pulmonary Vascular Tone During Cirrhosis
肝硬化期间肺血管张力的调节
- 批准号:
6400539 - 财政年份:2001
- 资助金额:
$ 43.83万 - 项目类别:
Regulation of Pulmonary Vascular Tone During Cirrhosis
肝硬化期间肺血管张力的调节
- 批准号:
6642858 - 财政年份:2001
- 资助金额:
$ 43.83万 - 项目类别:
Regulation of pHi and Fluid Flux in Corneal Endothelium
角膜内皮 pHi 和液体流量的调节
- 批准号:
9893877 - 财政年份:1991
- 资助金额:
$ 43.83万 - 项目类别:
Regulation of pHi and Fluid Flux in Corneal Endothelium
角膜内皮 pHi 和液体流量的调节
- 批准号:
9306379 - 财政年份:1991
- 资助金额:
$ 43.83万 - 项目类别:
Oxygen, Carbon and Phosphorus Flux from Lake Sediments: Regulation Through Epipelic Algae and Bacteria
湖泊沉积物中的氧、碳和磷通量:通过表层藻类和细菌进行调节
- 批准号:
8705342 - 财政年份:1987
- 资助金额:
$ 43.83万 - 项目类别:
Standard Grant