Simulation Package for Efficient Experimental Design and Inference in Microbiology

用于微生物学中高效实验设计和推理的仿真包

基本信息

  • 批准号:
    BB/M020193/1
  • 负责人:
  • 金额:
    $ 17.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

There is growing recognition within biological sciences that mathematical modelling provides powerful methods to improve our quantitative understanding of the dynamics of biological systems. Harnessing the full potential of these methods requires a complete integration of experimental data and dynamic models within the proper statistical framework. However, progress in this area has been patchy: while some fields of biology (systems biology) lead the way, others are lagging behind. Our proposal aims to develop and deliver a free computational package that will facilitate the complete integration of dynamic models and laboratory experiments, with an initial focus on research into host-pathogen interactions. This open-source software will have two related and essential functions: - statistical inference (SI): given a mechanistic model combining current knowledge and hypotheses about a biological system, how much information can be extracted from new experimental data about mechanisms that cannot be directly observed? - Optimal experimental design (OED): given a mechanistic model and preliminary data, what is the best way to design an experiment within set (budgetary or technical) constraints in order to maximise the expected gain of information?Recent progress in scientific computing has allowed the rapid development of algorithms for SI and OED, but they have been applied independently to other areas of research. Our project will deliver the first "one-stop shop" for inter-disciplinary research projects in microbiology. We will use state-of-the-art methods from applied statistics and tailor them to the specific needs of experimental biologists. An important novelty will be our focus on stochastic simulations, which allow random variations in the dynamics of a system: as in experiments with living organisms, repeats of the same procedure never yield exactly the same results. Because they capture this essential feature of real systems, stochastic models allow more reliable and accurate inference, albeit at the cost of greater computational complexity. Our many years of expertise at the interface of statistical modelling and experimental biology put us in a very strong position to tackle these challenges.This 18-month project will enable us to develop and test the functionality of the package with two experimental systems using existing and new data, before releasing it for free and public use in inter-disciplinary biological research. The software will be delivered as a package for use within the R software, which is a free statistical platform.
在生物科学领域,越来越多的人认识到,数学建模为提高我们对生物系统动力学的定量理解提供了强有力的方法。要充分利用这些方法的潜力,就需要在适当的统计框架内将实验数据和动态模型完全结合起来。然而,这一领域的进展参差不齐:虽然生物学的一些领域(系统生物学)走在了前面,但其他领域却落在了后面。我们的提案旨在开发和提供一个免费的计算包,以促进动态模型和实验室实验的完全整合,最初的重点是研究宿主-病原体的相互作用。这个开源软件将有两个相关的基本功能:-统计推断(SI):给定一个结合当前知识和关于生物系统的假设的机制模型,从新的实验数据中可以提取多少不能直接观察到的机制信息?-最佳实验设计(OED):给定一个机制模型和初步数据,在设定(预算或技术)约束条件下设计实验以最大化预期信息增益的最佳方法是什么?科学计算的最新进展使SI和OED的算法得以快速发展,但它们已独立应用于其他研究领域。我们的项目将为微生物学的跨学科研究项目提供第一个“一站式服务”。我们将使用应用统计学中最先进的方法,并根据实验生物学家的具体需求进行调整。一个重要的新奇之处将是我们对随机模拟的关注,它允许系统动力学中的随机变化:就像在生物实验中一样,重复相同的过程永远不会产生完全相同的结果。因为它们捕捉到了真实系统的这个基本特征,随机模型允许更可靠和准确的推断,尽管代价是更大的计算复杂性。我们在统计建模和实验生物学方面多年的专业知识使我们在应对这些挑战方面处于非常有利的地位。这个为期18个月的项目将使我们能够利用现有和新数据开发和测试两个实验系统的功能,然后将其免费发布给跨学科生物学研究的公众使用。该软件将作为软件包交付给R软件,R软件是一个免费的统计平台。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inferring within-host bottleneck size: A Bayesian approach.
推断主机内瓶颈大小:贝叶斯方法。
  • DOI:
    10.1016/j.jtbi.2017.09.011
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Dybowski R
  • 通讯作者:
    Dybowski R
Optimal Bayesian design for model discrimination via classification.
  • DOI:
    10.1007/s11222-022-10078-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Hainy M;Price DJ;Restif O;Drovandi C
  • 通讯作者:
    Drovandi C
Inferring Within-Host Bottleneck Size: A Bayesian Approach
推断主机内瓶颈大小:贝叶斯方法
  • DOI:
    10.1101/116194
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dybowski R
  • 通讯作者:
    Dybowski R
Optimal Bayesian design for model discrimination via classification
通过分类进行模型判别的最佳贝叶斯设计
  • DOI:
    10.48550/arxiv.1809.05301
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hainy M
  • 通讯作者:
    Hainy M
An induced natural selection heuristic for finding optimal Bayesian experimental designs
用于寻找最佳贝叶斯实验设计的诱导自然选择启发式
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Restif其他文献

A dynamic view of the spread and intracellular distribution of Salmonella enterica
沙门氏菌肠道传播及细胞内分布的动态视图
  • DOI:
    10.1038/nrmicro2034
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    103.300
  • 作者:
    Pietro Mastroeni;Andrew Grant;Olivier Restif;Duncan Maskell
  • 通讯作者:
    Duncan Maskell

Olivier Restif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Restif', 18)}}的其他基金

Worms and Bugs - Quantifying Infection Dynamics in Microcosms
蠕虫和臭虫 - 量化微观世界中的感染动态
  • 批准号:
    BB/I012222/1
  • 财政年份:
    2012
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Research Grant

相似海外基金

SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
  • 批准号:
    2335464
  • 财政年份:
    2024
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Wireless Integrated Circuits for the Era of 6G: System-in-a-Package
6G时代的无线集成电路:系统级封装
  • 批准号:
    FT230100104
  • 财政年份:
    2024
  • 资助金额:
    $ 17.71万
  • 项目类别:
    ARC Future Fellowships
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
FuSe-TG: Open, Multiscale, Application-Agnostic Platform for Heterogeneous System-in-Package Co-Design
FuSe-TG:开放、多尺度、与应用无关的异构系统级封装协同设计平台
  • 批准号:
    2235414
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
TB-CAPS: a mixed methods study to implement a peer-led, community-based psychosocial support package for Indonesians affected by tuberculosis stigma
TB-CAPS:一项混合方法研究,旨在为受结核病耻辱影响的印度尼西亚人实施由同伴主导、以社区为基础的社会心理支持方案
  • 批准号:
    MR/Y503216/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Research Grant
Narly Development Package
纳尔利开发包
  • 批准号:
    10069623
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Collaborative R&D
Co-designing and delivering a package to support the global use of plantar pressure in referral and determining effectiveness of orthotics
共同设计和交付一揽子计划,以支持全球使用足底压力来转诊和确定矫形器的有效性
  • 批准号:
    2883961
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Studentship
Development of comprehensive soil education package for achieving SDGs.
开发全面的土壤教育包以实现可持续发展目标。
  • 批准号:
    23H02113
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Artificial intelligence-based software package for end-to-end structural health monitoring of infrastructure systems
I-Corps:基于人工智能的软件包,用于基础设施系统的端到端结构健康监测
  • 批准号:
    2306180
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了