Design and Evolution of Artificial Enzymes with Non-Canonical Organocatalytic Residues

具有非典型有机催化残基的人工酶的设计和进化

基本信息

  • 批准号:
    BB/M027023/1
  • 负责人:
  • 金额:
    $ 118.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Traditional methods of producing essential chemicals such as medicines, pesticides and fuels are inefficient, expensive and create a huge burden on the environment. In order to maintain our current standard of living and to make essential products available to the global population, we urgently need to develop clean, efficient and sustainable manufacturing technologies to replace traditional chemical processes. An exciting technology that is already being widely adopted by major chemical companies is called Biocatalysis, whereby microorganisms (e.g. bacteria and yeast) are used to produce large amounts of enzymes (nature's catalysts) which are subsequently used in environmentally friendly processes to efficiently convert starting materials into desired products and high-value intermediates. Importantly, scientists are now able to quickly modify and optimize the natural function and properties of an enzyme to make it suitable for its desired application through a process called directed evolution, which mimics Darwinian evolution on a laboratory timescale. In principal, through directed evolution it should ultimately be possible to replace those chemical processes for which there is a natural counterpart with greener, more efficient biocatalytic alternatives. Unfortunately, to produce our essential chemicals we rely heavily on a series of non-natural reactions, and enzymes capable of performing these transformations simply do not exist. This means that for a typical multi-step sequence required to produce an essential chemical, existing technology may only allow us to replace one or two steps with a clean enzymatic process, with the remaining steps still reliant on hazardous chemical reactions. My research aims to overcome these significant limitations by creating enzymes which are able to efficiently catalyze synthetically valuable, non-natural reactions.Nature's enzymes are made up from various combinations of only twenty standard amino acid building blocks which are generally not suitable to promote non-natural reactions. To achieve the ambitious goal of creating artificial enzymes, we will supply microorganisms with the necessary tools to produce biocatalysts which contain new functional, catalytic amino acids with unique properties. These residues are carefully designed so that they can be produced cheaply, cleanly and efficiently and have the necessary functionality to perform not one, but many important non-natural reactions which are currently carried out using hazardous chemical reagents. The primitive and promiscuous enzymes initially produced are expected to display low activity compared with natural enzymes, since they have not been subjected to millions of years of natural evolutionary processes to optimize their function. However, directed evolution offers an ideal method to rapidly optimize the activity of these biocatalysts to produce specialized, robust enzymes suitable for use in manufacturing processes. These enzymes can be used as standalone catalysts to make high-value intermediates or in multi-step biocatalytic pathways to produce new and existing medicines, pesticides and fuels. Since these essential products will be produced cheaply in an environmentally friendly manner, they will be widely accessible for use by the global population.
传统的生产药品、杀虫剂和燃料等基本化学品的方法效率低、成本高,给环境造成了巨大的负担。为了维持我们目前的生活水平,并向全球人民提供基本产品,我们迫切需要开发清洁、高效和可持续的制造技术,以取代传统的化学工艺。一种已经被主要化学公司广泛采用的令人兴奋的技术被称为生物催化,利用微生物(例如细菌和酵母)来生产大量的酶(自然的催化剂),这些酶随后被用于环境友好的过程,以有效地将起始原料转化为所需的产品和高价值的中间体。重要的是,科学家现在能够通过一种名为定向进化的过程来快速修改和优化酶的自然功能和性质,使其适合其预期的应用,这一过程在实验室时间尺度上模仿达尔文进化。原则上,通过定向进化,最终应该有可能用更绿色、更有效的生物催化替代品取代那些有天然对应的化学过程。不幸的是,为了生产我们的基本化学品,我们严重依赖一系列非自然反应,而能够执行这些转化的酶根本不存在。这意味着,对于生产必需化学品所需的典型多步骤序列,现有技术可能只允许我们用清洁的酶促过程取代一两个步骤,其余步骤仍然依赖于危险的化学反应。我的研究旨在通过创造能够有效催化合成有价值的非自然反应的酶来克服这些显著的限制。自然界的酶是由只有20个标准氨基酸构建块的各种组合组成的,这些构建块通常不适合促进非自然反应。为了实现创造人造酶的雄心勃勃的目标,我们将为微生物提供必要的工具,以生产含有新的功能性、催化氨基酸的生物催化剂,这些氨基酸具有独特的性质。这些残留物经过精心设计,可以廉价、清洁和高效地生产,并具有执行目前使用危险化学试剂进行的不是一个而是许多重要的非自然反应所需的功能。最初产生的原始和混杂的酶预计与自然酶相比活性较低,因为它们没有经过数百万年的自然进化过程来优化其功能。然而,定向进化提供了一种理想的方法来快速优化这些生物催化剂的活性,以生产适合于制造过程的特殊、健壮的酶。这些酶可以用作独立的催化剂,以制造高价值的中间体,或用于多步骤生物催化途径,以生产新的和现有的药物、农药和燃料。由于这些基本产品将以环境友好的方式以廉价的方式生产,它们将被全球人民广泛获得使用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategies for designing biocatalysts with new functions
设计具有新功能的生物催化剂的策略
  • DOI:
    10.1039/d3cs00972f
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    46.2
  • 作者:
    Bell E
  • 通讯作者:
    Bell E
Biocatalysis
  • DOI:
    10.1038/s43586-021-00044-z
  • 发表时间:
    2021-06-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bell, Elizabeth L.;Finnigan, William;Flitsch, Sabine L.
  • 通讯作者:
    Flitsch, Sabine L.
A Non-Canonical Nucleophile Unlocks a New Mechanistic Pathway in a Designed Enzyme
非典型亲核试剂在设计的酶中解锁了新的机制途径
  • DOI:
    10.21203/rs.3.rs-2922796/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crossley A
  • 通讯作者:
    Crossley A
Engineering enzyme activity using an expanded amino acid alphabet.
  • DOI:
    10.1093/protein/gzac013
  • 发表时间:
    2023-01-21
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Birch-Price, Zachary;Taylor, Christopher J.;Ortmayer, Mary;Green, Anthony P.
  • 通讯作者:
    Green, Anthony P.
Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction.
  • DOI:
    10.1038/s41557-021-00833-9
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Crawshaw R;Crossley AE;Johannissen L;Burke AJ;Hay S;Levy C;Baker D;Lovelock SL;Green AP
  • 通讯作者:
    Green AP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Green其他文献

3145 – CHARACTERISATION OF PRE-LEUKEMIC TRANSCRIPTOMIC LANDSCAPES REVEALS RE-DISTRIBUTION OF THE EARLIEST STAGES OF THE HEMATOPOIETIC HIERARCHY AND THE PUTATIVE UNDERLYING TRANSCRIPTIONAL DRIVING PROCESSES.
  • DOI:
    10.1016/j.exphem.2020.09.152
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicola Wilson;Sam Watcham;Katherine Sturgess;Daniel Prins;Mairi Shepherd;Rebecca Hannah;Anthony Green;David Kent;Berthold Gottgens
  • 通讯作者:
    Berthold Gottgens
203. Factors Associated With HIV Pre-Exposure Prophylaxis Willingness Among Young Black And Latino Men Who Have Sex With Men (YBLMSM) And Transgender Women (TW)
  • DOI:
    10.1016/j.jadohealth.2018.10.220
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kenneth Wee;Kathryn Van Eck;Noya Galai;William Vickroy;Durryle Brooks;Marne Castillo;Connie Trexler;Shimataver Ge;Rashida Carr;Anthony Green;David Hardy;David Celentano;Renata Arrington-Sanders
  • 通讯作者:
    Renata Arrington-Sanders
To show or not to show: The effects of item stems and answer options on performance on a multiple-choice listening comprehension test
  • DOI:
    10.1016/j.system.2007.12.003
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kozo Yanagawa;Anthony Green
  • 通讯作者:
    Anthony Green
Order matters: sequence of mutation acquisition influences human disease pathogenesis
  • DOI:
    10.1016/j.exphem.2013.05.078
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Kent;Christina Ortmann;Yvonne Silber;Juergen Fink;Anthony Green
  • 通讯作者:
    Anthony Green
New techniques in radium and radon therapy
  • DOI:
    10.1016/s0368-2242(51)80014-9
  • 发表时间:
    1951-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Green;W. Alan Jennings
  • 通讯作者:
    W. Alan Jennings

Anthony Green的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Green', 18)}}的其他基金

International Centre for Enzyme Design (ICED)
国际酶设计中心 (ICED)
  • 批准号:
    EP/Z531157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Research Grant
Design and Evolution of Photoenzymes for Triplet Energy Transfer Catalysis
三重态能量转移催化光酶的设计和进化
  • 批准号:
    EP/Y023722/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Research Grant
Scalable Production of Precisely Engineered Proteins Using an Expanded Genetic Code
使用扩展的遗传密码大规模生产精确工程蛋白质
  • 批准号:
    BB/Y00812X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Research Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Artificial evolution of brain structure by a whole brain-whole body model
通过全脑-全身模型进行大脑结构的人工进化
  • 批准号:
    23K18149
  • 财政年份:
    2023
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
  • 批准号:
    10559270
  • 财政年份:
    2023
  • 资助金额:
    $ 118.2万
  • 项目类别:
CAREER: Characterizing the repeated evolution of dioecy in plants to engineer artificial chromosomes
职业:表征植物中雌雄异株的重复进化,以设计人工染色体
  • 批准号:
    2239530
  • 财政年份:
    2023
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Continuing Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Standard Grant
A Phylodynamic Artificial Intelligence framework to predict evolution of SARS-CoV-2 variants of concern in Immunocompromised persons with HIV (PhAI-CoV)
用于预测免疫功能低下的 HIV 感染者 (PhAI-CoV) 中关注的 SARS-CoV-2 变异体进化的系统动力学人工智能框架
  • 批准号:
    10481017
  • 财政年份:
    2022
  • 资助金额:
    $ 118.2万
  • 项目类别:
A Phylodynamic Artificial Intelligence framework to predict evolution of SARS-CoV-2 variants of concern in Immunocompromised persons with HIV (PhAI-CoV)
用于预测免疫功能低下的 HIV 感染者 (PhAI-CoV) 中关注的 SARS-CoV-2 变异体进化的系统动力学人工智能框架
  • 批准号:
    10664035
  • 财政年份:
    2022
  • 资助金额:
    $ 118.2万
  • 项目类别:
DMREF/Collaborative Research: Design and Optimization of Granular Metamaterials using Artificial Evolution
DMREF/协作研究:利用人工进化设计和优化颗粒超材料
  • 批准号:
    2118988
  • 财政年份:
    2021
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2140211
  • 财政年份:
    2021
  • 资助金额:
    $ 118.2万
  • 项目类别:
    Standard Grant
Artificial Intelligence Boosted Evolution and Detection of Genetically Encoded Reporters for In Vivo Imaging
人工智能促进体内成像基因编码报告基因的进化和检测
  • 批准号:
    10379290
  • 财政年份:
    2021
  • 资助金额:
    $ 118.2万
  • 项目类别:
Artificial Intelligence Boosted Evolution and Detection of Genetically Encoded Reporters for In Vivo Imaging
人工智能促进体内成像基因编码报告基因的进化和检测
  • 批准号:
    10180072
  • 财政年份:
    2021
  • 资助金额:
    $ 118.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了