From Ion Channel Structure to Function: Better Tools to Annotate Membrane Protein Structures
从离子通道结构到功能:注释膜蛋白结构的更好工具
基本信息
- 批准号:BB/N000145/1
- 负责人:
- 金额:$ 72.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The way we think and move, as well as the way we interact with and perceive our surroundings are just a few of the important processes controlled by ion channels and membrane transport proteins. In effect, almost every process in the body requires the movement of charged ions (like salts such as sodium chloride), or other molecules (like glucose), into and out of our cells. Without the tiny pores created by these membrane proteins a cell would just be an impermeable plastic bag incapable of interacting with its environment.These membrane proteins are therefore not only essential for all forms of 'bioelectrical' and cellular signalling, but also for life itself. It is therefore perhaps not surprising that 50% of current drug targets are thought to reside within cell membranes. The importance of these proteins has also driven many recent advances that now allow us to visualise their 3-D structure in exquisite detail. However, these images represent only the beginning of a long journey to understand how an ion channel works.Central to this understanding is not only the ability to visualise the transmembrane pathways which ions take through these proteins, but also to identify any barriers which exist within these pores. This is important because controlling these barriers enables cellular electrical signals to be switched on or off.Ions generally move through channels in their 'hydrated' state i.e. dissolved in water, and so previous methods for identification of barriers have mostly focussed on comparing the relative size of a dissolved ion to the size of the pathway through which it moves. This approach has proven extremely useful in the past. However, studies by us and others, now clearly demonstrate that the relative greasiness or 'hydrophobicity' of these narrow pathways also has a profound influence on the movement of ions, i.e. it is not just a matter of how wide the holes are. This is because water behaves very differently in a narrow greasy pore compared to one where the surface is easily wetted or 'hydrophilic'. As a result, if a section of a pore does not easily fill with water then ions cannot pass through, and a barrier is created. The scientific principles underlying this process also explain why oil and water do not mix, how cell membranes and biomolecules assemble, and why water is so essential for nearly all forms of life.Unfortunately, it is not possible to directly visualise the behaviour of water in such nanometre-sized pores. However, we have recently shown that powerful computational methods known as 'Molecular Dynamics Simulations' can accurately model these processes and therefore act as a 'computational microscope' to visualise this behaviour. Using this approach we have predicted the existence of hydrophobic barriers in several novel channel structures. Importantly, we have validated these predictions with a variety of experimental approaches, including direct changes to the 'wettability' of the channel itself. These results have had a major impact on our understanding of how these ion channels function.In this project we will develop new tools to simulate and predict the behaviour of water in membrane pores and transport pathways. This will enable a wide range of scientists, from the casual user to expert structural biologist, to accurately predict these hydrophobic barriers in any new or existing protein structure. To underpin this we will improve our mechanistic understanding of these processes by further refining and experimentally validating our computational methods in several model channel systems. These predictive tools will be designed with the requirements of the end-user in mind and for easy implementation on a number of different platforms, ranging from desktop PCs to supercomputers. The toolkit aims to meet a rapidly increasing demand for functional annotation and will have a far reaching impact on understanding how ion channels and membrane transport proteins work.
我们思考和移动的方式,以及我们与周围环境相互作用和感知的方式,只是由离子通道和膜转运蛋白控制的一些重要过程。实际上,身体中的几乎每一个过程都需要带电离子(如氯化钠等盐)或其他分子(如葡萄糖)进出我们的细胞。如果没有这些膜蛋白形成的微孔,细胞就只是一个不透气的塑料袋,无法与环境相互作用。因此,这些膜蛋白不仅对所有形式的“生物电”和细胞信号至关重要,而且对生命本身也至关重要。因此,目前50%的药物靶点被认为位于细胞膜内,这也许并不奇怪。这些蛋白质的重要性也推动了许多最近的进展,现在使我们能够以精致的细节可视化它们的3D结构。然而,这些图像仅仅代表了理解离子通道如何工作的漫长旅程的开始。这种理解的核心不仅是能够可视化离子通过这些蛋白质的跨膜途径,而且还能够识别这些孔内存在的任何障碍。这是重要的,因为控制这些障碍,使细胞电信号被打开或关闭。离子通常移动通过通道在他们的“水合”状态,即溶解在水中,因此以前的方法识别障碍主要集中在比较溶解的离子的相对大小,通过它移动的路径的大小。这种方法在过去被证明是非常有用的。然而,我们和其他人的研究现在清楚地表明,这些狭窄通道的相对油脂性或“疏水性”对离子的运动也有深远的影响,即它不仅仅是孔有多宽的问题。这是因为水的行为非常不同,在一个狭窄的油腻毛孔相比,一个表面很容易润湿或“湿”。因此,如果孔隙的一部分不容易充满水,那么离子就不能通过,并形成屏障。这一过程背后的科学原理也解释了为什么油和水不能混合,细胞膜和生物分子如何组装,以及为什么水对几乎所有形式的生命都是必不可少的。不幸的是,不可能直接可视化水在这种纳米尺寸的孔隙中的行为。然而,我们最近发现,被称为“分子动力学模拟”的强大计算方法可以准确地模拟这些过程,因此可以作为一个“计算显微镜”来可视化这种行为。使用这种方法,我们已经预测了疏水性障碍的存在,在几个新的通道结构。重要的是,我们已经用各种实验方法验证了这些预测,包括直接改变通道本身的“润湿性”。这些结果对我们理解这些离子通道的功能产生了重大影响。在这个项目中,我们将开发新的工具来模拟和预测水在膜孔和运输途径中的行为。这将使广泛的科学家,从普通用户到专业的结构生物学家,能够准确地预测任何新的或现有的蛋白质结构中的疏水屏障。为了支持这一点,我们将进一步完善和实验验证我们的计算方法在几个模型通道系统,以提高我们对这些过程的机械理解。这些预测工具的设计将考虑到最终用户的要求,并易于在从台式PC到超级计算机的许多不同平台上实施。该工具包旨在满足快速增长的功能注释需求,并将对理解离子通道和膜转运蛋白如何工作产生深远影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1.
- DOI:10.1038/s41467-022-28511-5
- 发表时间:2022-02-14
- 期刊:
- 影响因子:16.6
- 作者:Jojoa-Cruz S;Saotome K;Tsui CCA;Lee WH;Sansom MSP;Murthy SE;Patapoutian A;Ward AB
- 通讯作者:Ward AB
Influence of water models on water movement through AQP1
水模型通过 AQP1 对水运动的影响
- DOI:10.48550/arxiv.2101.06965
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gonzalez M
- 通讯作者:Gonzalez M
Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel.
- DOI:10.1016/j.str.2017.03.006
- 发表时间:2017-05-02
- 期刊:
- 影响因子:0
- 作者:Aryal P;Jarerattanachat V;Clausen MV;Schewe M;McClenaghan C;Argent L;Conrad LJ;Dong YY;Pike ACW;Carpenter EP;Baukrowitz T;Sansom MSP;Tucker SJ
- 通讯作者:Tucker SJ
Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy.
- DOI:10.1097/j.pain.0000000000001116
- 发表时间:2018-03
- 期刊:
- 影响因子:7.4
- 作者:Blesneac I;Themistocleous AC;Fratter C;Conrad LJ;Ramirez JD;Cox JJ;Tesfaye S;Shillo PR;Rice ASC;Tucker SJ;Bennett DLH
- 通讯作者:Bennett DLH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Tucker其他文献
The prevalence of risk factors for foot ulceration in patients with end stage renal disease on haemodialysis
- DOI:
10.1186/1757-1146-4-s1-o22 - 发表时间:
2011-05-20 - 期刊:
- 影响因子:2.200
- 作者:
Michelle Kaminski;Nicoletta Frescos;Stephen Tucker - 通讯作者:
Stephen Tucker
THE ASSOCIATION BETWEEN ECHOCARDIOGRAPHIC LABORATORY ACCREDITATION AND THE QUALITY OF IMAGING AND REPORTING
- DOI:
10.1016/s0735-1097(17)34923-9 - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Jeremy Thaden;Michael Tsang;Chadi Ayoub;Ratnasari Padang;Vuyisile Nkomo;Stephen Tucker;Cynthia Cassidy;Merri Bremer;Garvan Kane;Patricia Pellikka - 通讯作者:
Patricia Pellikka
TREK Channel Pore Probed by Cysteine Scanning Mutagenesis and Structural Modelling
- DOI:
10.1016/j.bpj.2009.12.1773 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Paula L. Piechotta;Phill J. Stansfeld;Murali K. Bollepalli;Markus Rapedius;Isabelle Andres-Enguix;Lijun Shang;Hariolf Fritzenschaft;Mark S.P. Sansom;Stephen Tucker;Thomas Baukrowitz - 通讯作者:
Thomas Baukrowitz
Identification and developmental expression of the Xenopus laevis cystic fibrosis transmembrane conductance regulator gene.
非洲爪蟾囊性纤维化跨膜电导调节基因的鉴定和发育表达。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:3.5
- 作者:
Stephen Tucker;D. Tannahill;C. Higgins - 通讯作者:
C. Higgins
Stephen Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Tucker', 18)}}的其他基金
The structural and functional basis of defective TASK1 X-Gating in a novel channelopathy associated with sleep apnoea
与睡眠呼吸暂停相关的新型通道病中缺陷 TASK1 X-Gating 的结构和功能基础
- 批准号:
MR/W017741/1 - 财政年份:2022
- 资助金额:
$ 72.53万 - 项目类别:
Research Grant
Unlocking the Potential of K2P Potassium Channels with Nanobodies
用纳米抗体释放 K2P 钾通道的潜力
- 批准号:
BB/T002018/1 - 财政年份:2019
- 资助金额:
$ 72.53万 - 项目类别:
Research Grant
Exploitation of a Pharmacological 'Master Switch' to Probe the K+ Channel Selectivity Filter Gating Mechanism
利用药理学“主开关”来探测 K 通道选择性滤波器门控机制
- 批准号:
BB/S008608/1 - 财政年份:2019
- 资助金额:
$ 72.53万 - 项目类别:
Research Grant
The Structural Mechanism of K2P Channel Gating
K2P通道门控的结构机制
- 批准号:
BB/J00037X/1 - 财政年份:2012
- 资助金额:
$ 72.53万 - 项目类别:
Research Grant
Exploiting a novel hybrid ion channel to understand the mechanism of sodium ion selectivity
利用新型混合离子通道来了解钠离子选择性的机制
- 批准号:
BB/F013035/1 - 财政年份:2008
- 资助金额:
$ 72.53万 - 项目类别:
Research Grant
相似国自然基金
同步辐射光源 channel-cut 晶体窄缝的游离微珠辅助化学机械抛光研究
- 批准号:21ZR1467700
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
经颅磁刺激对 Alzheimer病小鼠脑内homer1a-BK channel信号通路的影响及疗效评估
- 批准号:81371222
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Distinct Ion Channel Pools and Intercalated Disk Nanoscale Structure Regulate Cardiac Conduction
独特的离子通道池和闰盘纳米级结构调节心脏传导
- 批准号:
10676368 - 财政年份:2023
- 资助金额:
$ 72.53万 - 项目类别:
High-resolution structure, function, and anti-viral inhibition of the SARS-CoV2 E protein ion channel
SARS-CoV2 E蛋白离子通道的高分辨率结构、功能和抗病毒抑制作用
- 批准号:
BB/V01997X/1 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
Research Grant
Structure and mechanism of activation of the mechanosensitive ion channel TACAN
机械敏感离子通道TACAN的结构和激活机制
- 批准号:
nhmrc : 2000934 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
Ideas Grants
STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
- 批准号:
9927711 - 财政年份:2017
- 资助金额:
$ 72.53万 - 项目类别:
STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
- 批准号:
9381325 - 财政年份:2017
- 资助金额:
$ 72.53万 - 项目类别:
Structure of an acid sensing ion channel in a resting state at high pH.
高 pH 下静息状态的酸传感离子通道的结构。
- 批准号:
9326027 - 财政年份:2016
- 资助金额:
$ 72.53万 - 项目类别:
Structure-function analysis of a novel mechanosensitive ion channel
新型机械敏感离子通道的结构-功能分析
- 批准号:
482320-2015 - 财政年份:2015
- 资助金额:
$ 72.53万 - 项目类别:
University Undergraduate Student Research Awards
Development of hollow fiber ion exchange membrane having phase separation ion channel structure
具有相分离离子通道结构的中空纤维离子交换膜的研制
- 批准号:
15K06541 - 财政年份:2015
- 资助金额:
$ 72.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design, Synthesis and Functional Analysis of Ion-Channel-Forming Molecules Based on Polytheonamide Structure
基于聚酰胺结构的离子通道形成分子的设计、合成及功能分析
- 批准号:
15H06156 - 财政年份:2015
- 资助金额:
$ 72.53万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Structure Function of Mechanically Activated Ion Channel
机械激活离子通道的结构功能
- 批准号:
8681567 - 财政年份:2012
- 资助金额:
$ 72.53万 - 项目类别: