Exploiting a novel hybrid ion channel to understand the mechanism of sodium ion selectivity

利用新型混合离子通道来了解钠离子选择性的机制

基本信息

  • 批准号:
    BB/F013035/1
  • 负责人:
  • 金额:
    $ 72.96万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Almost every single process in the human body is controlled at some level by electrical signals, from the way our hearts beat, the way our muscles move, to the way we think. These electrical signals are generated and controlled by a family of proteins called 'ion channels' which reside in the membrane of every living cell and which act as 'electrical switches' to control the selective movement of charged ions like sodium (Na+) into the cell and and to allow potassium (K+) out of the cell. It is therefore absolutely essential that these membrane pores are able to be 'selective' for these ions i.e. to distinguish between Na+ and K+, as otherwise the movement of these ions would become mixed up and these electrical signals would not be able to happen. To understand the fundamental mechanisms which control this 'ionic selectivity' requires a detailed knowledge about the three-dimensional shape and structure of these proteins. The most common way of obtaining high-resolution structural information involves purifying the protein and then concentrating it so that it forms crystals, similar to the way a solution of table salt crystallises when it begins to dry out. These crystals are then placed in an X-ray beam and the way in which these X-ray beams are scattered by the atoms within the crystal tells us about the 3D-structure of the protein. A lot is already known about the way in which channels select for K+ ions over Na+ ions and the 2003 Nobel Prize in chemistry was awarded to Prof Rod MacKinnon (Rockefeller University) for determining this mechanism in a bacterial K+ channel. However, the mechanism by which similar channels select for Na+ over K+ remains elusive and remains one of the major challenges in ion channel biophysics. One of the problems has been that there are very few Na+ channels which produce enough protein suitable for crystallography. We have identified a possible solution to this problem as we have recently cloned a novel bacterial Na+ channel gene which is simple in structure and very similar to several other related K+ channels which have already been crystallised. We have conducted extensive preliminary investigations which demonstrate the viability of this project i.e. we show that this novel channel (KirBac9.1) expresses well and can be purified in an intact functional form. More importantly, we also demonstrate that this purified protein is capable of forming protein crystals which produce 'diffraction patterns' i.e. the data required to determine their structure. Based upon these exciting new findings we seek funding for two research assistants and associated costs to pursue this exciting new opportunity to determine the structure of this novel Na+ channel and further characterise its functional properties. This will enable us to build upon these results and move this project forwards. Achievement of these goals would have an international impact as it would not only unlock the basic molecular mechanisms of this most fundamental biological process, but would also provide a framework for understanding how this process occurs in human Na+ channels. The potential applications of this knowledge would not only benefit basic science but also have a major effect on the design of novel drugs, as Na+ channels are important therapeutic targets.
几乎人体的每一个过程都在某种程度上受到电信号的控制,从我们的心跳方式,肌肉运动方式,到我们的思维方式。这些电信号是由一组被称为“离子通道”的蛋白质产生和控制的,这些蛋白质存在于每个活细胞的膜上,充当“电子开关”,控制钠离子(Na+)进入细胞的选择性运动,并允许钾离子(K+)离开细胞。因此,至关重要的是,这些膜孔能够对这些离子具有“选择性”,即区分Na+和K+,否则这些离子的运动将变得混乱,这些电信号将无法发生。要了解控制这种“离子选择性”的基本机制,需要对这些蛋白质的三维形状和结构有详细的了解。获得高分辨率结构信息的最常见方法包括纯化蛋白质,然后将其浓缩,使其形成晶体,类似于食盐溶液在变干时结晶的方式。然后将这些晶体置于x射线束中,这些x射线束被晶体内的原子散射的方式告诉我们蛋白质的3d结构。关于通道选择K+离子而不是Na+离子的方式,我们已经知道了很多,2003年诺贝尔化学奖授予了罗德·麦金农教授(洛克菲勒大学),因为他确定了细菌K+通道中的这一机制。然而,类似通道选择Na+而不是K+的机制仍然难以捉摸,并且仍然是离子通道生物物理学的主要挑战之一。其中一个问题是,很少有Na+通道产生足够的蛋白质适合晶体学。我们已经确定了这个问题的可能解决方案,因为我们最近克隆了一种新的细菌Na+通道基因,它结构简单,与已经结晶的其他几个相关的K+通道非常相似。我们已经进行了广泛的初步调查,证明了这个项目的可行性,即我们表明这种新的通道(KirBac9.1)表达良好,可以以完整的功能形式纯化。更重要的是,我们还证明了这种纯化的蛋白质能够形成蛋白质晶体,产生“衍射图案”,即确定其结构所需的数据。基于这些令人兴奋的新发现,我们寻求资助两位研究助理和相关费用,以追求这一令人兴奋的新机会,以确定这种新型Na+通道的结构,并进一步表征其功能特性。这将使我们能够在这些结果的基础上继续推进这个项目。这些目标的实现将产生国际影响,因为它不仅将解开这一最基本生物过程的基本分子机制,而且还将为理解这一过程如何在人类Na+通道中发生提供一个框架。这一知识的潜在应用不仅有利于基础科学,而且对新药的设计也有重大影响,因为Na+通道是重要的治疗靶点。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating.
  • DOI:
    10.1038/nsmb.2208
  • 发表时间:
    2012-01-08
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Bavro, Vassiliy N.;De Zorzi, Rita;Schmidt, Matthias R.;Muniz, Joao R. C.;Zubcevic, Lejla;Sansom, Mark S. P.;Venien-Bryan, Catherine;Tucker, Stephen J.
  • 通讯作者:
    Tucker, Stephen J.
Modular Design of the Selectivity Filter Pore Loop in a Novel Family of Prokaryotic 'Inward Rectifier' (NirBac) channels.
  • DOI:
    10.1038/srep15305
  • 发表时间:
    2015-10-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zubcevic L;Wang S;Bavro VN;Lee SJ;Nichols CG;Tucker SJ
  • 通讯作者:
    Tucker SJ
Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry.
  • DOI:
    10.1016/j.str.2010.04.012
  • 发表时间:
    2010-07-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gupta S;Bavro VN;D'Mello R;Tucker SJ;Vénien-Bryan C;Chance MR
  • 通讯作者:
    Chance MR
Functional complementation and genetic deletion studies of KirBac channels: activatory mutations highlight gating-sensitive domains.
  • DOI:
    10.1074/jbc.m110.175687
  • 发表时间:
    2010-12-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paynter JJ;Andres-Enguix I;Fowler PW;Tottey S;Cheng W;Enkvetchakul D;Bavro VN;Kusakabe Y;Sansom MS;Robinson NJ;Nichols CG;Tucker SJ
  • 通讯作者:
    Tucker SJ
Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains.
  • DOI:
    10.1074/jbc.m113.501833
  • 发表时间:
    2014-01-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zubcevic L;Bavro VN;Muniz JR;Schmidt MR;Wang S;De Zorzi R;Venien-Bryan C;Sansom MS;Nichols CG;Tucker SJ
  • 通讯作者:
    Tucker SJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Tucker其他文献

The prevalence of risk factors for foot ulceration in patients with end stage renal disease on haemodialysis
  • DOI:
    10.1186/1757-1146-4-s1-o22
  • 发表时间:
    2011-05-20
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Michelle Kaminski;Nicoletta Frescos;Stephen Tucker
  • 通讯作者:
    Stephen Tucker
THE ASSOCIATION BETWEEN ECHOCARDIOGRAPHIC LABORATORY ACCREDITATION AND THE QUALITY OF IMAGING AND REPORTING
  • DOI:
    10.1016/s0735-1097(17)34923-9
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Jeremy Thaden;Michael Tsang;Chadi Ayoub;Ratnasari Padang;Vuyisile Nkomo;Stephen Tucker;Cynthia Cassidy;Merri Bremer;Garvan Kane;Patricia Pellikka
  • 通讯作者:
    Patricia Pellikka
TREK Channel Pore Probed by Cysteine Scanning Mutagenesis and Structural Modelling
  • DOI:
    10.1016/j.bpj.2009.12.1773
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paula L. Piechotta;Phill J. Stansfeld;Murali K. Bollepalli;Markus Rapedius;Isabelle Andres-Enguix;Lijun Shang;Hariolf Fritzenschaft;Mark S.P. Sansom;Stephen Tucker;Thomas Baukrowitz
  • 通讯作者:
    Thomas Baukrowitz
Identification and developmental expression of the Xenopus laevis cystic fibrosis transmembrane conductance regulator gene.
非洲爪蟾囊性纤维化跨膜电导调节基因的鉴定和发育表达。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Stephen Tucker;D. Tannahill;C. Higgins
  • 通讯作者:
    C. Higgins
The Time It Took Tom
汤姆花费的时间
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Sharratt;Stephen Tucker
  • 通讯作者:
    Stephen Tucker

Stephen Tucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Tucker', 18)}}的其他基金

The structural and functional basis of defective TASK1 X-Gating in a novel channelopathy associated with sleep apnoea
与睡眠呼吸暂停相关的新型通道病中缺陷 TASK1 X-Gating 的结构和功能基础
  • 批准号:
    MR/W017741/1
  • 财政年份:
    2022
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Research Grant
Unlocking the Potential of K2P Potassium Channels with Nanobodies
用纳米抗体释放 K2P 钾通道的潜力
  • 批准号:
    BB/T002018/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Research Grant
Exploitation of a Pharmacological 'Master Switch' to Probe the K+ Channel Selectivity Filter Gating Mechanism
利用药理学“主开关”来探测 K 通道选择性滤波器门控机制
  • 批准号:
    BB/S008608/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Research Grant
From Ion Channel Structure to Function: Better Tools to Annotate Membrane Protein Structures
从离子通道结构到功能:注释膜蛋白结构的更好工具
  • 批准号:
    BB/N000145/1
  • 财政年份:
    2016
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Research Grant
The Structural Mechanism of K2P Channel Gating
K2P通道门控的结构机制
  • 批准号:
    BB/J00037X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Research Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
  • 批准号:
    2418485
  • 财政年份:
    2024
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Standard Grant
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Standard Grant
Regeneration of Retina with Physiological Functions by Hybrid Culture and Evaluation of Drugs / Production of Novel iPS Cells for Transplantation.
通过混合培养和药物评估/生产用于移植的新型 iPS 细胞来再生具有生理功能的视网膜。
  • 批准号:
    23K09017
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
LINE1-ORF0 in SLE pathogenesis
SLE 发病机制中的 LINE1-ORF0
  • 批准号:
    10681876
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
I-TRANSFER-HF: Improving TRansitions ANd OutcomeS for Heart FailurE Patients in Home Health CaRe: A Type 1 Hybrid Effectiveness Implementation Trial
I-TRANSFER-HF:改善家庭医疗保健中心力衰竭患者的过渡和结果:1 型混合有效性实施试验
  • 批准号:
    10714524
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
Engineering locus-specific binders to DNA modifications
工程化位点特异性结合剂以进行 DNA 修饰
  • 批准号:
    10593668
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
  • 批准号:
    10608767
  • 财政年份:
    2023
  • 资助金额:
    $ 72.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了