Analysis of quantitative genetic traits in a huge data set
海量数据集中的数量遗传性状分析
基本信息
- 批准号:BB/N006178/1
- 负责人:
- 金额:$ 83.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The genetic basis of quantitative trait variation and covariation is central to human genetics, evolutionary biology, and plant and animal breeding. In medical genetics many diseases, including schizophrenia, heart disease and cancer, are complex traits with continuous phenotypes and liabilities, which have multiple genome variants contributing genetic variance. In evolutionary biology fitness is largely due to such quantitative traits (e.g., fecundity, longevity). In plant and animal breeding most of the economically important traits are quantitative traits (e.g., milk, meat, and grain yields, environmental footprint, fecundity). Huge datasets are needed for statistical genomics because many variants (probably thousands), which can be clustered together, contribute to any individual quantitative trait and their effects can combine in complex ways (additive, dominant, epistatic). Moreover, important portions of the genetic variance of quantitative traits are controlled by variants that are rare, have small effect sizes or are highly correlated with other variants. The effects of such quantitative trait variants can only be separated when very powerful statistical models are used in very large data sets.We will analyse the genetic basis of 25 quantitative traits at the molecular level by creating and analysing a dataset containing genome sequences, pedigrees and trait records of 325000 pigs from the world's biggest commercial breeding programme. The dataset will be created and analysed using imputation and analysis algorithms based on those that we developed to support the breeding programme.The size of the dataset and the quality of the data will allow us to address three big questions:-1. Which genome variants control which quantitative traits, how do they control them and how do the multiple variants that control a single trait interact?2. What kinds of mechanisms cause traits to co-vary? To what extent does pleiotropy and linkage disequilibrium contribute? What is the distribution of the magnitude and sign of joint effects of genomic regions on pairs of traits? 3. To what extent do huge data sets help us address these questions? For the first time we have the technology to generate genome sequence data for hundreds of thousands of individuals at low cost and the computer power to store and analyse such data.The aim of this project is to harvest scientific benefits from a 15 year billion dollar pig breeding program. Our previous projects asked how statistical genomics helps animal breeding; this project asks how animal breeding helps statistical genomics.
数量性状变异和共变的遗传基础是人类遗传学、进化生物学和动植物育种的核心。在医学遗传学中,许多疾病,包括精神分裂症、心脏病和癌症,都是具有连续表型和责任的复杂性状,它们具有多个基因组变异,导致遗传变异。在进化生物学中,适应性很大程度上取决于这些数量特征(例如,繁殖力、寿命)。在植物和动物育种中,大多数经济上重要的性状都是数量性状(例如,奶、肉和谷物产量、环境足迹、繁殖力)。统计基因组学需要庞大的数据集,因为可以聚集在一起的许多变异(可能是数千个)对任何单个数量性状都有贡献,而且它们的影响可以以复杂的方式(加性、显性、上位性)组合在一起。此外,数量性状遗传变异的重要部分是由罕见的、效应量小的或与其他变异高度相关的变异控制的。只有在非常大的数据集中使用非常强大的统计模型时,才能分离出这种数量性状变异的影响。我们将在分子水平上分析25个数量性状的遗传基础,通过创建和分析包含基因组序列、系谱和来自世界上最大的商业育种计划的325000头猪的性状记录的数据集。数据集将根据我们为支持育种计划而开发的数据集,使用输入和分析算法来创建和分析。数据集的大小和数据的质量将允许我们解决三个大问题:-1。哪些基因组变异控制哪些数量性状,它们是如何控制它们的,以及控制单个性状的多个变异是如何相互作用的?什么样的机制导致特质共变?多效性和连锁不平衡在多大程度上起作用?基因组区域对成对性状的联合效应的大小和符号的分布是什么?3. 庞大的数据集能在多大程度上帮助我们解决这些问题?我们第一次拥有了以低成本为成千上万个人生成基因组序列数据的技术,以及存储和分析这些数据的计算机能力。这个项目的目的是从150亿美元的养猪计划中获得科学效益。我们之前的项目是关于统计基因组学如何帮助动物育种;这个项目探讨动物育种如何帮助统计基因组学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A genome-wide association study for loin depth and muscle pH in pigs from intensely selected purebred lines.
- DOI:10.1186/s12711-023-00815-0
- 发表时间:2023-06-15
- 期刊:
- 影响因子:4.1
- 作者:Desire, Suzanne;Johnsson, Martin;Ros-Freixedes, Roger;Chen, Ching-Yi;Holl, Justin W. W.;Herring, William O. O.;Gorjanc, Gregor;Mellanby, Richard J. J.;Hickey, John M. M.;Jungnickel, Melissa K. K.
- 通讯作者:Jungnickel, Melissa K. K.
A method for the allocation of sequencing resources in genotyped livestock populations.
- DOI:10.1186/s12711-017-0322-5
- 发表时间:2017-05-18
- 期刊:
- 影响因子:0
- 作者:Gonen S;Ros-Freixedes R;Battagin M;Gorjanc G;Hickey JM
- 通讯作者:Hickey JM
Comparison of genomic prediction models for general combining ability in early stages of hybrid breeding programs
杂交育种项目早期一般配合力基因组预测模型的比较
- DOI:10.1002/csc2.21105
- 发表时间:2023
- 期刊:
- 影响因子:2.3
- 作者:De Jong G
- 通讯作者:De Jong G
AlphaSimR: an R package for breeding program simulations.
- DOI:10.1093/g3journal/jkaa017
- 发表时间:2021-02-09
- 期刊:
- 影响因子:0
- 作者:Gaynor RC;Gorjanc G;Hickey JM
- 通讯作者:Hickey JM
A hybrid method for the imputation of genomic data in livestock populations.
- DOI:10.1186/s12711-017-0300-y
- 发表时间:2017-03-03
- 期刊:
- 影响因子:0
- 作者:Antolín R;Nettelblad C;Gorjanc G;Money D;Hickey JM
- 通讯作者:Hickey JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Hickey其他文献
Spatial Dissection of the Bone Marrow Microenvironment in Multiple Myeloma By High Dimensional Multiplex Tissue Imaging
- DOI:
10.1182/blood-2023-189255 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Marc-Andrea Baertsch;Alexander Brobeil;John Hickey;Maximilian Haist;Alexandra Maria Poos;Guolan Lu;Wilson Kuswanto;Christian Schuerch;Harald Voehringer;Wolfgang Huber;Gunhild Mechtersheimer;Carsten Mueller-Tidow;Peter Schirmacher;Katja Weisel;Roland Fenk;Hartmut Goldschmidt;Yury Goltsev;Marc S. Raab;Niels Weinhold;Garry P. Nolan - 通讯作者:
Garry P. Nolan
Colonisation of clearfelled coupes by rainforest tree species from mature mixed forest edges, Tasmania, Australia
- DOI:
10.1016/j.foreco.2006.11.021 - 发表时间:
2007-03-15 - 期刊:
- 影响因子:
- 作者:
John Tabor;Chris McElhinny;John Hickey;Jeff Wood - 通讯作者:
Jeff Wood
John Hickey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Hickey', 18)}}的其他基金
A general method for the imputation of genomic data in crop species
作物物种基因组数据估算的通用方法
- 批准号:
BB/R002061/1 - 财政年份:2017
- 资助金额:
$ 83.83万 - 项目类别:
Research Grant
15AGRITECHCAT3 Precision Breeding: Broilers from Sequence to Consequence
15AGRITECHCAT3 精准育种:肉鸡从顺序到结果
- 批准号:
BB/N004728/1 - 财政年份:2015
- 资助金额:
$ 83.83万 - 项目类别:
Research Grant
Developing next generation genetic improvement tools from next generation sequencing
通过下一代测序开发下一代遗传改良工具
- 批准号:
BB/M009254/1 - 财政年份:2015
- 资助金额:
$ 83.83万 - 项目类别:
Research Grant
15AGRITECHCAT3 Innovative NextGen pig breeding using DNA sequence data
15AGRITECHCAT3 使用 DNA 序列数据的创新下一代猪育种
- 批准号:
BB/N004736/1 - 财政年份:2015
- 资助金额:
$ 83.83万 - 项目类别:
Research Grant
NIRG: FARSPhase: a Flexible, widely Applicable, Robust, and Scalable phasing algorithm for human genetics
NIRG:FARSPhase:一种灵活、广泛适用、稳健且可扩展的人类遗传学定相算法
- 批准号:
MR/M000370/1 - 财政年份:2015
- 资助金额:
$ 83.83万 - 项目类别:
Research Grant
Next generation imputation for huge data sets
大数据集的下一代插补
- 批准号:
BB/L020726/1 - 财政年份:2014
- 资助金额:
$ 83.83万 - 项目类别:
Research Grant
相似国自然基金
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
古菌Ferroplasma sp.在黄铜矿生物浸出中的生态功能
- 批准号:51074195
- 批准年份:2010
- 资助金额:37.0 万元
- 项目类别:面上项目
制冷系统故障诊断关键问题的定量研究
- 批准号:50876059
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Quantitative and function analysis platform for repetitive genes and gene isoforms in pluripotency regulation and differentiations
多能性调控和分化中重复基因和基因亚型的定量和功能分析平台
- 批准号:
10929710 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Risk Stratification for COPD Exacerbations with CT Analysis and Multidimensional Trajectory Subtyping
通过 CT 分析和多维轨迹分型对 COPD 恶化进行风险分层
- 批准号:
10658547 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
- 批准号:
10905156 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Uncovering novel mechanisms and potential therapeutic targets for IgA vasculitis through GWAS and systems-level analysis of regulatory networks.
通过 GWAS 和调节网络的系统级分析揭示 IgA 血管炎的新机制和潜在治疗靶点。
- 批准号:
10723651 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
Mapping heritable chromatin loop variants with allele-specific Hi-C analysis
通过等位基因特异性 Hi-C 分析绘制可遗传的染色质环变体图谱
- 批准号:
10583721 - 财政年份:2023
- 资助金额:
$ 83.83万 - 项目类别:
A deep longitudinal analysis of next generation influenza vaccines in older adults
对老年人使用下一代流感疫苗的深入纵向分析
- 批准号:
10544172 - 财政年份:2022
- 资助金额:
$ 83.83万 - 项目类别: