The exact chemical identity of reactive intermediates in O2-dependent uric acid biodegradation
O2 依赖性尿酸生物降解反应中间体的确切化学特性
基本信息
- 批准号:BB/P000169/1
- 负责人:
- 金额:$ 42.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differently from the majority of other animals humans cope with large quantities of uric acid in their bodies. This is because during evolution we have progressively silenced a gene responsible for the production of an enzyme called urate oxidase (UOX). This enzyme is able to break down uric acid into more soluble compounds. The reasons for human adaptation to high uric acid levels are not entirely clear and, interestingly, mice without a functional UOX enzyme die shortly after birth. Under certain pathological conditions that cause a further increase in uric acid UOX is administered to patients to help restore normal levels. Crystalline uric acid deposits are also the hallmark of gout disease.UOX requires molecular oxygen (O2) to perform its task of breaking down uric acid. O2 is a very interesting molecule as in its normal "resting" state (the form present in the air) does not want to react with the vast majority of organic molecules for reasons related to its electronic structure. Oxygen needs activation to react. A major problem, however, is that once "activated" oxygen can react indiscriminately with many biological molecules with detrimental consequences. For example, reactive oxygen species (ROS) are damaging forms of "active oxygen" that play an important role in aging. Therefore, besides the generation of "active oxygen", another challenge in oxygen biochemistry, is its control. In this work we will investigate how UOX uses O2 to break down uric acid. Interestingly, UOX belongs to a small group of enzymes that can bring oxygen into reacting with their organic substrates and steer the reaction towards the desired products with limited chemical tools at its disposal. In fact, as oxygen activation is not an easy task, the vast majority of enzymes rely on special additional components like metal and/or organic co-factors to form "active oxygen". UOX does not require these additional helpers and therefore understanding how it works is particularly intriguing. Using a technique called X-ray crystallography which allows to 'see' at very high resolution the 3D structure of molecules as small as urate oxidase (10,000 times smaller that the thickness of a human's hair) we have been able to visualise snapshots of the enzyme along the process of uric acid degradation (reaction intermediates) including also the state in which O2 is trapped above the substrate. These snapshots led us to formulate some hypotheses on how urate oxidase works. We are now in an excellent position to study the most elusive and critically important properties of UOX chemistry. For this we will use a technique called neutron crystallography that can detect atoms (hydrogens) that cannot be typically observed even by X-ray crystallography. By combining neutron crystallography, X-ray crystallography, modern spectroscopic techniques and advanced quantum mechanical theoretical methods to probe states that are not experimentally accessible we will understand general rules of O2 biochemistry in the context of UOX function. This integrated approach will allow a deeper understanding not only of UOX but also of oxygen, an essential component of life on Earth.
与大多数其他动物不同的是,人类需要应对体内大量的尿酸。这是因为在进化过程中,我们逐渐沉默了一种基因,该基因负责产生一种名为尿酸氧化酶(UOX)的酶。这种酶能够将尿酸分解成更易溶的化合物。人类适应高尿酸水平的原因尚不完全清楚,有趣的是,没有功能UOX酶的小鼠在出生后不久就会死亡。在导致尿酸进一步增加的某些病理情况下,患者会被给予UOX以帮助恢复正常水平。结晶尿酸沉积也是痛风病的标志。UOX需要分子氧(O2)来完成分解尿酸的任务。O2是一种非常有趣的分子,因为由于与其电子结构有关的原因,O2处于正常的“静止”状态(空气中存在的形式)不想与绝大多数有机分子反应。氧气需要活化才能反应。然而,一个主要的问题是,一旦被激活,氧气就会不分青红皂白地与许多生物分子发生反应,造成有害的后果。例如,活性氧物种(ROS)是一种破坏性的“活性氧”形式,在衰老过程中起着重要作用。因此,氧气生物化学的另一个挑战,除了“活性氧”的产生,就是它的控制。在这项工作中,我们将研究UOX是如何利用O2分解尿酸的。有趣的是,UOX属于一小部分酶,它们可以携带氧气与有机底物反应,并在有限的化学工具下将反应导向所需的产品。事实上,由于氧气的活化并不是一件容易的事情,绝大多数的酶都依赖于特殊的附加成分,如金属和/或有机辅助因子来形成“活性氧”。UOX不需要这些额外的助手,因此了解它的工作原理特别有趣。使用一种名为X射线结晶学的技术,可以在非常高的分辨率下‘看到’小到尿酸氧化酶(小于人类头发厚度的1万倍)的分子的3D结构,我们已经能够可视化该酶沿着尿酸降解(反应中间体)的过程的快照,包括O2被困在底物上方的状态。这些快照让我们对尿酸酸氧化酶的工作原理提出了一些假设。我们现在处于一个很好的位置来研究UOX化学中最难以捉摸和至关重要的性质。为此,我们将使用一种名为中子结晶学的技术,该技术可以检测到即使是X射线结晶学也无法观察到的原子(氢)。通过结合中子结晶学、X射线结晶学、现代光谱技术和先进的量子力学理论方法来探测实验上无法获得的态,我们将在UOX函数的背景下了解O2生物化学的一般规律。这种综合的方法将使人们不仅能够更深入地了解UOX,而且还可以更深入地了解氧气,氧气是地球上生命的基本成分。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Raman spectroscopy for structural biology on beamline ID29 of the ESRF.
ESRF 光束线 ID29 上的结构生物学在线拉曼光谱。
- DOI:10.1016/j.jsb.2017.10.004
- 发表时间:2017
- 期刊:
- 影响因子:3
- 作者:Von Stetten D
- 通讯作者:Von Stetten D
Joint neutron/X-ray crystal structure of a mechanistically relevant complex of perdeuterated urate oxidase and simulations provide insight into the hydration step of catalysis.
- DOI:10.1107/s2052252520013615
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.9
- 作者:McGregor L;Földes T;Bui S;Moulin M;Coquelle N;Blakeley MP;Rosta E;Steiner RA
- 通讯作者:Steiner RA
Neutron crystallographic refinement with REFMAC5 from the CCP4 suite.
- DOI:10.1107/s2059798323008793
- 发表时间:2023-12-01
- 期刊:
- 影响因子:0
- 作者:Catapano L;Long F;Yamashita K;Nicholls RA;Steiner RA;Murshudov GN
- 通讯作者:Murshudov GN
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Steiner其他文献
Interest Spreads in Banking in Colombia, 1974-96
- DOI:
10.2307/3867667 - 发表时间:
1999-06-01 - 期刊:
- 影响因子:2.200
- 作者:
Adolfo Barajas;Roberto Steiner;Natalia Salazar - 通讯作者:
Natalia Salazar
The organisation of titin at the centre of the vertebrate striated muscle thick filament
- DOI:
10.1016/j.bpj.2022.11.375 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Pauline Bennett;Martin Rees;Sarah Grover;Atsushi Fukuzawa;Alexander Alexandrovich;Roberto Steiner;Mathias Gautel - 通讯作者:
Mathias Gautel
Cuáles Colegios Ofrecen Mejor Educación En Colombia
哥伦比亚高级教育学院
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Jairo Núñez;Roberto Steiner;Ximena Cadena;R. Pardo - 通讯作者:
R. Pardo
Why Don't They Lend? Credit Stagnation in Latin America
- DOI:
10.2307/3872475 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Adolfo Barajas;Roberto Steiner - 通讯作者:
Roberto Steiner
Roberto Steiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roberto Steiner', 18)}}的其他基金
Mechanistic basis for co-operativity in kinesin-1 / cargo recognition
驱动蛋白-1/货物识别协同性的机制基础
- 批准号:
BB/S000828/1 - 财政年份:2018
- 资助金额:
$ 42.21万 - 项目类别:
Research Grant
Acceleration and control of spin-restricted oxygenation by cofactor-independent dioxygeanses
不依赖辅因子的双加氧酶加速和控制自旋限制氧合
- 批准号:
BB/I020411/1 - 财政年份:2012
- 资助金额:
$ 42.21万 - 项目类别:
Research Grant
相似国自然基金
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
中性粒细胞在体内条件下重编程为造血干祖细胞的研究
- 批准号:92068101
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
小分子化合物促进肝细胞增殖和肝脏再生的研究
- 批准号:32000504
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
一种新的质子感知Gq蛋白偶联受体的筛选及其鉴定
- 批准号:31960149
- 批准年份:2019
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
自成漆酶/介体体系应用于化学机械浆清洁漂白及树脂障碍控制的研究
- 批准号:21006034
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
- 批准号:81060329
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
马缨丹Lantana camara提取物对水葫芦Eichhornia ctassipes 生长抑制作用的化学机制
- 批准号:30971927
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Revealing the hidden identity and toxicity of priority chemical pollutants released during microplastic degradation and additive leaching in marine...
揭示海洋中微塑料降解和添加剂浸出过程中释放的主要化学污染物的隐藏身份和毒性...
- 批准号:
2772605 - 财政年份:2023
- 资助金额:
$ 42.21万 - 项目类别:
Studentship
Keratin-dependent regulation of progenitor keratinocyte identity and commitment to differentiation
角质形成细胞祖细胞身份和分化承诺的角蛋白依赖性调节
- 批准号:
10525612 - 财政年份:2022
- 资助金额:
$ 42.21万 - 项目类别:
Decoding Single-cell DNA Methylomes for Epigenetic Cell Identity
解码单细胞 DNA 甲基化组以了解表观遗传细胞身份
- 批准号:
10703425 - 财政年份:2022
- 资助金额:
$ 42.21万 - 项目类别:
iKITT Innovative Keratitis Identity Type Test
iKITT 创新角膜炎身份类型测试
- 批准号:
10007570 - 财政年份:2020
- 资助金额:
$ 42.21万 - 项目类别:
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10357906 - 财政年份:2020
- 资助金额:
$ 42.21万 - 项目类别:
iKITT Innovative Keratitis Identity Type Test
iKITT 创新角膜炎身份类型测试
- 批准号:
10259811 - 财政年份:2020
- 资助金额:
$ 42.21万 - 项目类别:
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10569639 - 财政年份:2020
- 资助金额:
$ 42.21万 - 项目类别:
Functional and molecular identity of renal sensory nerves in hypertension
高血压肾感觉神经的功能和分子特征
- 批准号:
10305628 - 财政年份:2019
- 资助金额:
$ 42.21万 - 项目类别:
Functional and molecular identity of renal sensory nerves in hypertension
高血压肾感觉神经的功能和分子特征
- 批准号:
10053681 - 财政年份:2019
- 资助金额:
$ 42.21万 - 项目类别: