Quantification of protein dynamics driving the circadian clock
驱动生物钟的蛋白质动力学的量化
基本信息
- 批准号:BB/P017347/1
- 负责人:
- 金额:$ 77.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Circadian clocks are essential to life on our rotating planet, and in all living organisms drive 24h patterns of physiology and behaviour that adapt them to the regular changes of the light:dark cycle. The past 20 years has witnessed a revolution in our understanding of the genetic mechanisms driving the circadian clock in a wide range of organisms, and this has led to a new understanding of how a small number of core "clock genes" regulate cellular pace-making. In contrast to our new genetic understanding, we know almost nothing of how the key proteins that are encoded by these genes actually behave in order to assemble a daily timekeeper. This ignorance is because we have lacked the essential technological tools to study how these proteins move around the cell in time and space. Also, we have been unable to measure the absolute concentration of clock proteins at different phases of the circadian cycle: we know the proteins appear and disappear on a daily basis, but not how they move around the cell, nor their concentrations, individually and one relative to another, across 24 h. This is a really big gap in knowledge, since we do not know which proteins are rate-limiting, how they interact with each other and importantly, what happens to these proteins in cells in which genetic mutations lead to profound changes in the pace of the core clockwork. This is important knowledge to obtain as in modern life many people are confronted with significant challenges to their circadian clock, leading to abnormal sleep and metabolic side effects. New chrono-pharmaceutical approaches, timing drug delivery to work with the body's clockwork, are one way to address these issues, but to do so we need to understand the clock mechanism. Indeed, earlier work by our laboratory has already made significant advances in the use of these approaches in inflammatory disease. In this project, we build on a recent study in which we used cutting-edge microscopic techniques to measured the dynamic changes in a core clock protein (PER2) in real-time over the circadian cycle in single cells. Now, we propose to use a new efficient method of gene editing to attach fluorescent molecules to several key clock genes. These molecules emit light at a specific wavelength, so by using different variants attached to the 5 or so key clock proteins, we can track several clock proteins simultaneously in individual cells. Other methods will allow us to estimate when these proteins join to form a functional complex (i.e. interact) and also estimate their concentration. We will then study their behaviour in a critical pacemaking structure in the brain called the suprachiasmatic nucleus (SCN). The SCN co-ordinates and synchronises multiple body rhythms in major organs with the sleep/wake cycle, and is crucial for normal health. We will extend these studies to other cells and tissues, including fibroblasts (a common cell type in all body organs). We will apply drugs and environmental stimuli such as temperature cycles to cells to manipulate their clocks, and monitor the resulting behaviour of the clock proteins in real-time. From this, we shall gain important new insight into the central mechanisms controlling the circadian pacemaker. Finally, our proposal will generate for the field of circadian timing an un-paralleled resource base, leading to a transformation in quantitative biology in which we will be able to use mathematical modelling to predict how the clock will behave in response to environmental disruption, disease etc. This is essential knowledge, as it will guide future developments in the field of chronopharmacology.
昼夜节律钟对于我们旋转的星球上的生命至关重要,并且在所有生物体中驱动着 24 小时的生理和行为模式,使它们适应光:暗周期的规律变化。过去20年,我们对驱动多种生物体生物钟的遗传机制的理解发生了一场革命,这使我们对少数核心“生物钟基因”如何调节细胞节奏产生了新的认识。与我们对基因的新认识相反,我们几乎不知道这些基因编码的关键蛋白质实际上是如何发挥作用来组装日常计时器的。这种无知是因为我们缺乏必要的技术工具来研究这些蛋白质如何在时间和空间上在细胞中移动。此外,我们无法测量昼夜节律周期不同阶段的时钟蛋白的绝对浓度:我们知道这些蛋白质每天都会出现和消失,但不知道它们如何在细胞中移动,也不知道它们在 24 小时内的单独浓度和相对浓度。这是一个非常大的知识差距,因为我们不知道哪些蛋白质是限速的,它们如何相互作用,更重要的是,这些蛋白质在细胞中会发生什么,在这些细胞中,基因突变会导致核心时钟装置的节奏发生深刻的变化。这是需要获得的重要知识,因为在现代生活中,许多人的生物钟面临着重大挑战,导致睡眠异常和代谢副作用。新的计时药物方法,即根据人体的时钟装置定时给药,是解决这些问题的一种方法,但要做到这一点,我们需要了解时钟机制。事实上,我们实验室的早期工作已经在使用这些方法治疗炎症性疾病方面取得了重大进展。在这个项目中,我们以最近的一项研究为基础,在该研究中,我们使用尖端的显微技术来实时测量单细胞昼夜节律周期中核心时钟蛋白 (PER2) 的动态变化。现在,我们建议使用一种新的有效的基因编辑方法将荧光分子附着到几个关键的时钟基因上。这些分子发射特定波长的光,因此通过使用连接到大约 5 个关键时钟蛋白的不同变体,我们可以同时跟踪单个细胞中的多个时钟蛋白。其他方法将使我们能够估计这些蛋白质何时结合形成功能复合物(即相互作用)并估计它们的浓度。然后我们将研究它们在大脑中称为视交叉上核(SCN)的关键起搏结构中的行为。 SCN 协调并同步主要器官的多个身体节律与睡眠/觉醒周期,对于正常健康至关重要。我们将把这些研究扩展到其他细胞和组织,包括成纤维细胞(所有身体器官中的常见细胞类型)。我们将向细胞应用药物和温度循环等环境刺激来操纵它们的时钟,并实时监测时钟蛋白的行为。由此,我们将对控制昼夜节律起搏器的中央机制获得重要的新见解。最后,我们的提案将为昼夜节律计时领域产生一个无与伦比的资源基础,从而导致定量生物学的变革,其中我们将能够使用数学模型来预测生物钟将如何响应环境破坏、疾病等。这是必不可少的知识,因为它将指导时间药理学领域的未来发展。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons.
- DOI:10.1073/pnas.2113845119
- 发表时间:2022-01-25
- 期刊:
- 影响因子:11.1
- 作者:Smyllie NJ;Bagnall J;Koch AA;Niranjan D;Polidarova L;Chesham JE;Chin JW;Partch CL;Loudon ASI;Hastings MH
- 通讯作者:Hastings MH
Misalignment with the external light environment drives metabolic and cardiac dysfunction.
- DOI:10.1038/s41467-017-00462-2
- 发表时间:2017-09-12
- 期刊:
- 影响因子:16.6
- 作者:West AC;Smith L;Ray DW;Loudon ASI;Brown TM;Bechtold DA
- 通讯作者:Bechtold DA
Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching.
- DOI:10.1073/pnas.2203563119
- 发表时间:2022-08-23
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock.
- DOI:10.7554/elife.73976
- 发表时间:2022-03-14
- 期刊:
- 影响因子:7.7
- 作者:Koch AA;Bagnall JS;Smyllie NJ;Begley N;Adamson AD;Fribourgh JL;Spiller DG;Meng QJ;Partch CL;Strimmer K;House TA;Hastings MH;Loudon ASI
- 通讯作者:Loudon ASI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Loudon其他文献
Response to correspondence on “Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation”
- DOI:
10.1186/s13059-021-02320-3 - 发表时间:
2021-04-07 - 期刊:
- 影响因子:9.400
- 作者:
Channabasavaiah B. Gurumurthy;Aidan R. O’Brien;Rolen M. Quadros;John Adams;Pilar Alcaide;Shinya Ayabe;Johnathan Ballard;Surinder K. Batra;Marie-Claude Beauchamp;Kathleen A. Becker;Guillaume Bernas;David Brough;Francisco Carrillo-Salinas;Wesley Chan;Hanying Chen;Ruby Dawson;Victoria DeMambro;Jinke D’Hont;Katharine Dibb;James D. Eudy;Lin Gan;Jing Gao;Amy Gonzales;Anyonya Guntur;Huiping Guo;Donald W. Harms;Anne Harrington;Kathryn E. Hentges;Neil Humphreys;Shiho Imai;Hideshi Ishii;Mizuho Iwama;Eric Jonasch;Michelle Karolak;Bernard Keavney;Nay-Chi Khin;Masamitsu Konno;Yuko Kotani;Yayoi Kunihiro;Imayavaramban Lakshmanan;Catherine Larochelle;Catherine B. Lawrence;Lin Li;Volkhard Lindner;Xian-De Liu;Gloria Lopez-Castejon;Andrew Loudon;Jenna Lowe;Loydie Jerome-Majeweska;Taiji Matsusaka;Hiromi Miura;Yoshiki Miyasaka;Benjamin Morpurgo;Katherine Motyl;Yo-ichi Nabeshima;Koji Nakade;Toshiaki Nakashiba;Kenichi Nakashima;Yuichi Obata;Sanae Ogiwara;Mariette Ouellet;Leif Oxburgh;Sandra Piltz;Ilka Pinz;Moorthy P. Ponnusamy;David Ray;Ronald J. Redder;Clifford J. Rosen;Nikki Ross;Mark T. Ruhe;Larisa Ryzhova;Ane M. Salvador;Sabrina Shameen Alam;Radislav Sedlacek;Karan Sharma;Chad Smith;Katrien Staes;Lora Starrs;Fumihiro Sugiyama;Satoru Takahashi;Tomohiro Tanaka;Andrew Trafford;Yoshihiro Uno;Leen Vanhoutte;Frederique Vanrockeghem;Brandon J. Willis;Christian S. Wright;Yuko Yamauchi;Xin Yi;Kazuto Yoshimi;Xuesong Zhang;Yu Zhang;Masato Ohtsuka;Satyabrata Das;Daniel J. Garry;Tino Hochepied;Paul Thomas;Jan Parker-Thornburg;Antony D. Adamson;Atsushi Yoshiki;Jean-Francois Schmouth;Andrei Golovko;William R. Thompson;K. C. Kent Lloyd;Joshua A. Wood;Mitra Cowan;Tomoji Mashimo;Seiya Mizuno;Hao Zhu;Petr Kasparek;Lucy Liaw;Joseph M. Miano;Gaetan Burgio - 通讯作者:
Gaetan Burgio
Photoperiod and torpor influence clock gene expression in the Djungarian hamster (<em>Phodopus sungorus</em>) heart
- DOI:
10.1016/j.yjmcc.2006.03.240 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:
- 作者:
Fiona Crawford;Cassandra Hagarty;Stephan Steinlechner;Andrew Loudon - 通讯作者:
Andrew Loudon
Clocking in to immunity
开启免疫力
- DOI:
10.1038/s41577-018-0008-4 - 发表时间:
2018-04-16 - 期刊:
- 影响因子:60.900
- 作者:
Christoph Scheiermann;Julie Gibbs;Louise Ince;Andrew Loudon - 通讯作者:
Andrew Loudon
Andrew Loudon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Loudon', 18)}}的其他基金
Unravelling the networks that regulate seasonal rhythmicity in the epigenome
揭示表观基因组中调节季节节律的网络
- 批准号:
BB/N015584/1 - 财政年份:2016
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Local and systemic circadian cues coordinately regulate innate immunity via an epigenetic circuit.
局部和全身昼夜节律信号通过表观遗传回路协调调节先天免疫。
- 批准号:
BB/L000954/1 - 财政年份:2014
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Epigenetic control of seasonal timing
季节时间的表观遗传控制
- 批准号:
BB/K003119/1 - 财政年份:2013
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Dissection of a novel molecular pathway involved in seasonal timing in a melatonin-target tissue using an experimental and systems-level approach.
使用实验和系统级方法剖析涉及褪黑激素目标组织季节性计时的新分子途径。
- 批准号:
BB/G003033/1 - 财政年份:2008
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Molecular dynamics of circadian timing in a mouse model of human sleep disorder
人类睡眠障碍小鼠模型昼夜节律的分子动力学
- 批准号:
BB/E022553/1 - 财政年份:2007
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Neural and molecular pathways regulating torpor in mammals
调节哺乳动物麻木状态的神经和分子途径
- 批准号:
BB/E010490/1 - 财政年份:2007
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Regulation of circadian timers in a peripheral tissue the lung and identification of cellular and in vivo physiological pathways
肺周围组织昼夜节律定时器的调节以及细胞和体内生理途径的识别
- 批准号:
BB/D004357/1 - 财政年份:2006
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
相似国自然基金
子宫内膜间质与巨噬细胞之间通过Protein S-MerTK-Apelin信号对
话促进子宫腺肌病蜕膜化缺陷的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
- 批准号:32372636
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
- 批准号:82371054
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
- 批准号:82370976
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
- 批准号:82371798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
- 批准号:82370954
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Conference: 2024 Protein Folding Dynamics Gordon Research Seminar
会议:2024年蛋白质折叠动力学戈登研究研讨会
- 批准号:
2406203 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Standard Grant
Protein Structure and Dynamics by Electron/Nuclear Paramagnetic Resonance
通过电子/核顺磁共振研究蛋白质结构和动力学
- 批准号:
DP240100273 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Discovery Projects
New methods to capture protein dynamics of the TSC-mTOR signalling axis.
捕获 TSC-mTOR 信号轴蛋白质动态的新方法。
- 批准号:
DE240100992 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Discovery Early Career Researcher Award
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Stabilization, growth, and dynamics at the ciliary tip.
睫状体尖端的稳定、生长和动态。
- 批准号:
478242 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别:
Operating Grants
Structural Basis of Cyclic Nucleotide Signal Translation and Inhibition
环核苷酸信号翻译和抑制的结构基础
- 批准号:
483395 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别:
Operating Grants
High resolution cyclic ion mobility HDX mass spectrometry of protein dynamics and function
蛋白质动力学和功能的高分辨率循环离子淌度 HDX 质谱分析
- 批准号:
MR/X013030/1 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别:
Research Grant
Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
- 批准号:
10685132 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别:
Computer-aided design and development of isoform selective inhibitors of Casein Kinase 1
酪蛋白激酶 1 异构体选择性抑制剂的计算机辅助设计和开发
- 批准号:
10629703 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别:
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
- 批准号:
10634328 - 财政年份:2023
- 资助金额:
$ 77.78万 - 项目类别: