Molecular dynamics of circadian timing in a mouse model of human sleep disorder
人类睡眠障碍小鼠模型昼夜节律的分子动力学
基本信息
- 批准号:BB/E022553/1
- 负责人:
- 金额:$ 156.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have known for some time that daily clocks regulate rhythmical behaviour of sleep and wake in man and other animals. These daily rhythms are endogenous as they free-run in constant conditions, and do not require synchronization to external factors such as light and dark, and are therefore termed circadian ('around a day'). The major rhythm generator of the body resides within the hypothalamus of the brain, and is termed the suprachiasmatic nucleus (or SCN). The SCN has the unique properties that it will continue to oscillate when cultured in laboratory conditions. Genes regulating the circadian clock have been cloned and we know that a key feature regulating timing is how the protein products of these genes cycle in real-time around the cell. This is regulated in part by a class of enzymes called kinases, which add phosphate bonds to the protein (phosphorylation) thereby affecting its activity. One of the best known mutations of the circadian clock is a kinase (CK1e) and was discovered in hamsters over 20 years ago, causing a shortening of circadian period. This was termed the tau mutation, since the term tau is used by circadian biologists to denote period. Mutations in the same or similar kinase systems are known to induce sleep disorders in man. We have re-made this mutation in mice and shown that it accelerates behavioural activity cycles to a similar extent as hamsters. Our proposed work now aims to study how this kinase mutation accelerates the circadian clock, both in the brain and in peripheral body clocks as well. Our earlier research using hamsters has shown that the circadian clock may be accelerated by an abrupt change in phase at a specific time of day, due to accelerated turnover in the nucleus of the cell of core clock proteins. This is equivalent in mechanical terms to a gear box missing a few key cogs, causing it to jump to a new position at each rotation. We aim to test this idea in the mouse by studying protein movements in real-time using new transgenic animals which we aim to create in which key clock proteins are tagged with a fluorescent marker. These types of studies can only be addressed in mice, as these are the only animals in which it is possible to make such genetic modifications. We will use these animals to define how the kinase acts on its target proteins by studying which areas (domains) of the protein are phosphorylated by this kinase. By crossing our clock protein-tagged mice to the tau mutant animals, we will be able to define how tau accelerates period and on which proteins it acts. This is important as a description of how this is achieved could in the longer term lead to the development of novel drugs impacting on sleep and wake cycles in man. Some of core genes involved in the generation of circadian rhythms have been deleted from the genome of mice by genetic modification techniques. These so-called knock-out mice are still rhythmic as other residual clock elements are sufficient to drive behaviour. We will cross our tau mutant mice into these knock out mice and define which of the knock-outs exhibits shortening of wheel-running activity cycles. This will tell us whether tau can act in the absence of a specific gene and also the extent to which it can shorten period. By this means we aim to define which clock gene proteins are likely targets for regulation of behavioural activity cycles by tau. Finally, we aim to capitalize from the fact that the SCN and other tissues continue to oscillate in culture. We will monitor activity of cultured tissues using specialized reporters of clock genes which generate light (luciferase reporters). By monitoring light levels with specialized photon recording equipment, we will be able to examine how the circadian clock regulates timing in tissues, and their responses to stimuli which can re-set the clock.
我们已经知道一段时间了,生物钟调节着人类和其他动物的睡眠和觉醒的节律行为。这些每日节律是内源性的,因为它们在恒定条件下自由运行,并且不需要与外部因素如光和暗同步,因此被称为昼夜节律(“一天左右”)。身体的主要节律发生器位于大脑的下丘脑内,并被称为视交叉上核(或SCN)。SCN具有独特的性质,在实验室条件下培养时将继续振荡。调节生物钟的基因已经被克隆出来,我们知道调节时间的一个关键特征是这些基因的蛋白质产物如何在细胞周围实时循环。这在一定程度上受到一类称为激酶的酶的调节,激酶将磷酸键添加到蛋白质(磷酸化),从而影响其活性。生物钟最著名的突变之一是激酶(CK1e),20多年前在仓鼠中发现,导致昼夜节律周期缩短。这被称为tau突变,因为昼夜节律生物学家使用术语tau来表示周期。已知相同或相似激酶系统的突变会导致人类睡眠障碍。我们在小鼠中重新制造了这种突变,并表明它加速行为活动周期的程度与仓鼠相似。我们现在提出的工作旨在研究这种激酶突变如何加速大脑和外周生物钟的生物钟。我们早期使用仓鼠的研究表明,由于核心时钟蛋白的细胞核中的加速周转,生物钟可能会在一天中的特定时间通过相位的突然变化而加速。这在机械方面相当于齿轮箱缺少几个关键齿轮,导致它在每次旋转时跳到一个新的位置。我们的目标是通过使用新的转基因动物实时研究蛋白质运动来测试小鼠中的这一想法,我们的目标是创建其中关键时钟蛋白质用荧光标记物标记的转基因动物。这些类型的研究只能在小鼠中进行,因为这些是唯一可以进行这种遗传修饰的动物。我们将使用这些动物来确定激酶如何作用于其靶蛋白,通过研究蛋白质的哪些区域(结构域)被这种激酶磷酸化。通过将我们的时钟蛋白标记小鼠与tau突变动物杂交,我们将能够确定tau如何加速周期以及它作用于哪些蛋白质。这一点很重要,因为从长远来看,描述如何实现这一点可能会导致开发影响人类睡眠和觉醒周期的新药。通过遗传修饰技术,已经从小鼠基因组中删除了一些参与昼夜节律产生的核心基因。这些所谓的基因敲除小鼠仍然是有节奏的,因为其他残留的时钟元素足以驱动行为。我们将我们的tau突变小鼠与这些敲除小鼠杂交,并确定哪些敲除小鼠表现出轮跑活动周期的缩短。这将告诉我们tau蛋白是否可以在缺乏特定基因的情况下发挥作用,以及它可以在多大程度上缩短周期。通过这种方法,我们的目标是确定哪些时钟基因蛋白可能是tau调节行为活动周期的靶点。最后,我们的目标是利用SCN和其他组织在培养中继续振荡的事实。我们将使用产生光的时钟基因的专门报告物(荧光素酶报告物)监测培养组织的活性。通过使用专门的光子记录设备监测光水平,我们将能够研究生物钟如何调节组织中的时间,以及它们对可以重新设置时钟的刺激的反应。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel mechanism controlling resetting speed of the circadian clock to environmental stimuli.
- DOI:10.1016/j.cub.2014.02.027
- 发表时间:2014-03-31
- 期刊:
- 影响因子:9.2
- 作者:Pilorz, Violetta;Cunningham, Peter S.;Jackson, Anthony;West, Alexander C.;Wager, Travis T.;Loudon, Andrew S. I.;Bechtold, David A.
- 通讯作者:Bechtold, David A.
Lithium impacts on the amplitude and period of the molecular circadian clockwork.
- DOI:10.1371/journal.pone.0033292
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Li J;Lu WQ;Beesley S;Loudon AS;Meng QJ
- 通讯作者:Meng QJ
Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.
- DOI:10.1016/j.cub.2016.05.018
- 发表时间:2016-07-25
- 期刊:
- 影响因子:0
- 作者:Smyllie NJ;Pilorz V;Boyd J;Meng QJ;Saer B;Chesham JE;Maywood ES;Krogager TP;Spiller DG;Boot-Handford R;White MR;Hastings MH;Loudon AS
- 通讯作者:Loudon AS
A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus.
- DOI:10.1016/j.neuron.2013.03.011
- 发表时间:2013-05-22
- 期刊:
- 影响因子:16.2
- 作者:Brancaccio M;Maywood ES;Chesham JE;Loudon AS;Hastings MH
- 通讯作者:Hastings MH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Loudon其他文献
Response to correspondence on “Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation”
- DOI:
10.1186/s13059-021-02320-3 - 发表时间:
2021-04-07 - 期刊:
- 影响因子:9.400
- 作者:
Channabasavaiah B. Gurumurthy;Aidan R. O’Brien;Rolen M. Quadros;John Adams;Pilar Alcaide;Shinya Ayabe;Johnathan Ballard;Surinder K. Batra;Marie-Claude Beauchamp;Kathleen A. Becker;Guillaume Bernas;David Brough;Francisco Carrillo-Salinas;Wesley Chan;Hanying Chen;Ruby Dawson;Victoria DeMambro;Jinke D’Hont;Katharine Dibb;James D. Eudy;Lin Gan;Jing Gao;Amy Gonzales;Anyonya Guntur;Huiping Guo;Donald W. Harms;Anne Harrington;Kathryn E. Hentges;Neil Humphreys;Shiho Imai;Hideshi Ishii;Mizuho Iwama;Eric Jonasch;Michelle Karolak;Bernard Keavney;Nay-Chi Khin;Masamitsu Konno;Yuko Kotani;Yayoi Kunihiro;Imayavaramban Lakshmanan;Catherine Larochelle;Catherine B. Lawrence;Lin Li;Volkhard Lindner;Xian-De Liu;Gloria Lopez-Castejon;Andrew Loudon;Jenna Lowe;Loydie Jerome-Majeweska;Taiji Matsusaka;Hiromi Miura;Yoshiki Miyasaka;Benjamin Morpurgo;Katherine Motyl;Yo-ichi Nabeshima;Koji Nakade;Toshiaki Nakashiba;Kenichi Nakashima;Yuichi Obata;Sanae Ogiwara;Mariette Ouellet;Leif Oxburgh;Sandra Piltz;Ilka Pinz;Moorthy P. Ponnusamy;David Ray;Ronald J. Redder;Clifford J. Rosen;Nikki Ross;Mark T. Ruhe;Larisa Ryzhova;Ane M. Salvador;Sabrina Shameen Alam;Radislav Sedlacek;Karan Sharma;Chad Smith;Katrien Staes;Lora Starrs;Fumihiro Sugiyama;Satoru Takahashi;Tomohiro Tanaka;Andrew Trafford;Yoshihiro Uno;Leen Vanhoutte;Frederique Vanrockeghem;Brandon J. Willis;Christian S. Wright;Yuko Yamauchi;Xin Yi;Kazuto Yoshimi;Xuesong Zhang;Yu Zhang;Masato Ohtsuka;Satyabrata Das;Daniel J. Garry;Tino Hochepied;Paul Thomas;Jan Parker-Thornburg;Antony D. Adamson;Atsushi Yoshiki;Jean-Francois Schmouth;Andrei Golovko;William R. Thompson;K. C. Kent Lloyd;Joshua A. Wood;Mitra Cowan;Tomoji Mashimo;Seiya Mizuno;Hao Zhu;Petr Kasparek;Lucy Liaw;Joseph M. Miano;Gaetan Burgio - 通讯作者:
Gaetan Burgio
Clocking in to immunity
开启免疫力
- DOI:
10.1038/s41577-018-0008-4 - 发表时间:
2018-04-16 - 期刊:
- 影响因子:60.900
- 作者:
Christoph Scheiermann;Julie Gibbs;Louise Ince;Andrew Loudon - 通讯作者:
Andrew Loudon
Photoperiod and torpor influence clock gene expression in the Djungarian hamster (<em>Phodopus sungorus</em>) heart
- DOI:
10.1016/j.yjmcc.2006.03.240 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:
- 作者:
Fiona Crawford;Cassandra Hagarty;Stephan Steinlechner;Andrew Loudon - 通讯作者:
Andrew Loudon
Andrew Loudon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Loudon', 18)}}的其他基金
Quantification of protein dynamics driving the circadian clock
驱动生物钟的蛋白质动力学的量化
- 批准号:
BB/P017347/1 - 财政年份:2017
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
Unravelling the networks that regulate seasonal rhythmicity in the epigenome
揭示表观基因组中调节季节节律的网络
- 批准号:
BB/N015584/1 - 财政年份:2016
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
Local and systemic circadian cues coordinately regulate innate immunity via an epigenetic circuit.
局部和全身昼夜节律信号通过表观遗传回路协调调节先天免疫。
- 批准号:
BB/L000954/1 - 财政年份:2014
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
Epigenetic control of seasonal timing
季节时间的表观遗传控制
- 批准号:
BB/K003119/1 - 财政年份:2013
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
Dissection of a novel molecular pathway involved in seasonal timing in a melatonin-target tissue using an experimental and systems-level approach.
使用实验和系统级方法剖析涉及褪黑激素目标组织季节性计时的新分子途径。
- 批准号:
BB/G003033/1 - 财政年份:2008
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
Neural and molecular pathways regulating torpor in mammals
调节哺乳动物麻木状态的神经和分子途径
- 批准号:
BB/E010490/1 - 财政年份:2007
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
Regulation of circadian timers in a peripheral tissue the lung and identification of cellular and in vivo physiological pathways
肺周围组织昼夜节律定时器的调节以及细胞和体内生理途径的识别
- 批准号:
BB/D004357/1 - 财政年份:2006
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
- 批准号:32371150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁性薄膜和磁性纳米结构中的自旋动力学研究
- 批准号:11174131
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
星系结构基本单元星团的研究
- 批准号:11043006
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
星系恒星与气体的动力学演化
- 批准号:11073025
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
- 批准号:11043005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
弦场论及Tachyon动力学
- 批准号:10705008
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
微分遍历理论和廖山涛的一些方法的应用
- 批准号:10671006
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Using systematic computational approaches to elucidate the molecular and network dynamics underlying a circadian clock
使用系统计算方法来阐明生物钟背后的分子和网络动力学
- 批准号:
1953402 - 财政年份:2020
- 资助金额:
$ 156.53万 - 项目类别:
Standard Grant
Determining the molecular details of the PER2-CK1 delta interaction in the mammalian circadian clock
确定哺乳动物生物钟中 PER2-CK1 delta 相互作用的分子细节
- 批准号:
9759032 - 财政年份:2019
- 资助金额:
$ 156.53万 - 项目类别:
Molecular mechanisms of signaling systems responsive to light, redox and chemical environment
信号系统响应光、氧化还原和化学环境的分子机制
- 批准号:
10626098 - 财政年份:2017
- 资助金额:
$ 156.53万 - 项目类别:
Molecular mechanisms of signaling systems responsive to light, redox and chemical environment
信号系统响应光、氧化还原和化学环境的分子机制
- 批准号:
10406671 - 财政年份:2017
- 资助金额:
$ 156.53万 - 项目类别:
Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
- 批准号:
10063994 - 财政年份:2010
- 资助金额:
$ 156.53万 - 项目类别:
Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
- 批准号:
9895065 - 财政年份:2010
- 资助金额:
$ 156.53万 - 项目类别:
Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
- 批准号:
10304129 - 财政年份:2010
- 资助金额:
$ 156.53万 - 项目类别:
Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
- 批准号:
10531935 - 财政年份:2010
- 资助金额:
$ 156.53万 - 项目类别:
Molecular dynamics of circadian timing in a mouse model of human sleep disorder (Cambridge)
人类睡眠障碍小鼠模型昼夜节律的分子动力学(剑桥)
- 批准号:
BB/E023223/1 - 财政年份:2007
- 资助金额:
$ 156.53万 - 项目类别:
Research Grant