Neural and molecular pathways regulating torpor in mammals

调节哺乳动物麻木状态的神经和分子途径

基本信息

  • 批准号:
    BB/E010490/1
  • 负责人:
  • 金额:
    $ 104.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Seasonally breeding mammals such as Siberian hamsters live in extreme latitudes and cold climates, and commonly undergo regular daily drops of body temperature and metabolic rate in the winter months as an energy saving strategy. These daily torpor bouts are controlled by neural pathways from the brain, and are timed by the circadian clock. We know almost nothing of how such animals achieve this remarkable feat of metabolic adjustment. We have known for some time that thyroid hormones are crucial for correct timing of seasonal physiological rhythms, and that these hormones are also crucial for body temperature regulation. The purpose of this project is to investigate the role of thyroid hormones and their metabolites in the torpor process. Within the brain, the cells that line the third ventricle form a key structure. These 'ependymal' cells contain enzymes that act on thyroxine or 'T4' (which originates from the thyroid gland) and converts it to an active form called T3 (which has had one iodine molecule removed by a 'deiodinase-2' enzyme). An additional pathway regulates conversion of T4 to an inactive 'reverse' T3 molecule, using another enzyme, deiodinase-3. Recent studies now show that this reverse T3 molecule can be further converted to a naturally occurring compound called thyronamine or T1AM. T1AM is a potent suppressor of body temperature in mice and appears to drive them into torpor. We have shown that this also occurs in Siberian hamsters. Deiodinase 3 levels in the ependymal cells rise sharply if Siberian hamsters are kept on short 'winter-like' day lengths. In this project, we aim to see whether these naturally occurring changes in expression of the gene for deiodinase 3 are responsible for regulating altered levels of expression of T1AM in the brain. We will investigate this by measuring T1AM in collaboration with its discoverer, and assessing torpor responses of hamsters on summer and winter day lengths to T1AM treatment. We will then see whether we can alter expression of de-iodinase 3 by using viruses to deliver genes to the region of the brain where the enzyme operates. These viruses will cause the gene to be more strongly expressed than normal or suppressed and by this means we aim to demonstrate whether altered de-iodinase activity is a prime cause of the seasonal torpor mechanism. Finally, we will study two genetic models in mice, where it is easier to manipulate gene expression. In the first, we will study whether genetic removal of a receptor that we know makes these mice 'torpor-prone' results in altered T1AM synthesis. Secondly, we will use a mouse in which the natural deiodinase 3 gene is 'over-expressed' causing excessive amounts of this enzyme to be produced. This will allow us to establish whether alterations in this pathway are an essential pre-requisite for the control of torpor. The benefits of this research are that we hope to understand how fundamental mechanisms regulating body metabolism are controlled. There are clear implications to the study of man, and perhaps the possibility longer term of using such compounds to alter whole-body metabolism for medical purposes or even long-term space flights.
季节性繁殖的哺乳动物,如西伯利亚仓鼠,生活在极端纬度和寒冷的气候中,通常在冬季的几个月里每天定期体温和代谢率下降,以此作为一种节能策略。这些每日的麻木发作由大脑的神经通路控制,并由生物钟计时。我们几乎对这些动物是如何实现代谢调节这一非凡壮举一无所知。我们早就知道甲状腺激素对季节生理节律的正确时机至关重要,而且这些激素对体温调节也是至关重要的。本项目的目的是研究甲状腺激素及其代谢物在昏迷过程中的作用。在大脑内部,排列在第三脑室的细胞构成了一个关键结构。这些“室管膜”细胞含有作用于甲状腺素或‘T4’(来自甲状腺)的酶,并将其转化为一种名为T3的活性形式(已有一个碘分子被‘脱碘酶-2’酶去除)。另一条途径是利用另一种酶--脱碘酶-3,调节T4转化为不活跃的“反向”T3分子。最近的研究表明,这种反向的T3分子可以进一步转化为一种自然产生的化合物,称为胸腺胺或T1AMT1AM是一种有效的抑制小鼠体温的药物,似乎会使它们陷入麻木。我们已经证明,这也发生在西伯利亚仓鼠身上。如果西伯利亚仓鼠的日照时间很短,室管膜细胞中的脱碘酶3水平就会急剧上升。在这个项目中,我们的目标是了解脱碘酶3基因表达的这些自然发生的变化是否对大脑中T1AM表达水平的变化负责。我们将通过与其发现者合作测量T1AM,并评估夏季和冬季仓鼠对T1AM治疗的麻木反应来研究这一点。然后,我们将看看是否可以通过使用病毒将基因传递到大脑中酶工作的区域来改变脱碘酶3的表达。这些病毒将导致该基因比正常或被抑制的更强的表达,通过这种方法,我们的目的是证明脱碘酶活性的改变是否是季节性麻木机制的主要原因。最后,我们将研究两个小鼠的遗传模型,在这些模型中,更容易操纵基因表达。首先,我们将研究一种我们已知的受体的基因移除是否会导致这些小鼠的麻木倾向导致T1AM合成的改变。其次,我们将使用一只自然脱碘酶3基因过度表达的小鼠,这会导致这种酶产生过多。这将使我们能够确定这一途径的改变是否是控制麻木的必要先决条件。这项研究的好处是,我们希望了解调节身体新陈代谢的基本机制是如何控制的。这对人类的研究有明显的影响,也许长期使用这种化合物来改变医疗目的或甚至长期太空飞行的全身新陈代谢的可能性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Induction of the metabolic regulator Txnip in fasting-induced and natural torpor.
  • DOI:
    10.1210/en.2012-2051
  • 发表时间:
    2013-06
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Hand LE;Saer BR;Hui ST;Jinnah HA;Steinlechner S;Loudon AS;Bechtold DA
  • 通讯作者:
    Bechtold DA
Adiponectin induces A20 expression in adipose tissue to confer metabolic benefit.
  • DOI:
    10.2337/db13-1835
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Hand LE;Usan P;Cooper GJ;Xu LY;Ammori B;Cunningham PS;Aghamohammadzadeh R;Soran H;Greenstein A;Loudon AS;Bechtold DA;Ray DW
  • 通讯作者:
    Ray DW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Loudon其他文献

Response to correspondence on “Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation”
  • DOI:
    10.1186/s13059-021-02320-3
  • 发表时间:
    2021-04-07
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Channabasavaiah B. Gurumurthy;Aidan R. O’Brien;Rolen M. Quadros;John Adams;Pilar Alcaide;Shinya Ayabe;Johnathan Ballard;Surinder K. Batra;Marie-Claude Beauchamp;Kathleen A. Becker;Guillaume Bernas;David Brough;Francisco Carrillo-Salinas;Wesley Chan;Hanying Chen;Ruby Dawson;Victoria DeMambro;Jinke D’Hont;Katharine Dibb;James D. Eudy;Lin Gan;Jing Gao;Amy Gonzales;Anyonya Guntur;Huiping Guo;Donald W. Harms;Anne Harrington;Kathryn E. Hentges;Neil Humphreys;Shiho Imai;Hideshi Ishii;Mizuho Iwama;Eric Jonasch;Michelle Karolak;Bernard Keavney;Nay-Chi Khin;Masamitsu Konno;Yuko Kotani;Yayoi Kunihiro;Imayavaramban Lakshmanan;Catherine Larochelle;Catherine B. Lawrence;Lin Li;Volkhard Lindner;Xian-De Liu;Gloria Lopez-Castejon;Andrew Loudon;Jenna Lowe;Loydie Jerome-Majeweska;Taiji Matsusaka;Hiromi Miura;Yoshiki Miyasaka;Benjamin Morpurgo;Katherine Motyl;Yo-ichi Nabeshima;Koji Nakade;Toshiaki Nakashiba;Kenichi Nakashima;Yuichi Obata;Sanae Ogiwara;Mariette Ouellet;Leif Oxburgh;Sandra Piltz;Ilka Pinz;Moorthy P. Ponnusamy;David Ray;Ronald J. Redder;Clifford J. Rosen;Nikki Ross;Mark T. Ruhe;Larisa Ryzhova;Ane M. Salvador;Sabrina Shameen Alam;Radislav Sedlacek;Karan Sharma;Chad Smith;Katrien Staes;Lora Starrs;Fumihiro Sugiyama;Satoru Takahashi;Tomohiro Tanaka;Andrew Trafford;Yoshihiro Uno;Leen Vanhoutte;Frederique Vanrockeghem;Brandon J. Willis;Christian S. Wright;Yuko Yamauchi;Xin Yi;Kazuto Yoshimi;Xuesong Zhang;Yu Zhang;Masato Ohtsuka;Satyabrata Das;Daniel J. Garry;Tino Hochepied;Paul Thomas;Jan Parker-Thornburg;Antony D. Adamson;Atsushi Yoshiki;Jean-Francois Schmouth;Andrei Golovko;William R. Thompson;K. C. Kent Lloyd;Joshua A. Wood;Mitra Cowan;Tomoji Mashimo;Seiya Mizuno;Hao Zhu;Petr Kasparek;Lucy Liaw;Joseph M. Miano;Gaetan Burgio
  • 通讯作者:
    Gaetan Burgio
Clocking in to immunity
开启免疫力
  • DOI:
    10.1038/s41577-018-0008-4
  • 发表时间:
    2018-04-16
  • 期刊:
  • 影响因子:
    60.900
  • 作者:
    Christoph Scheiermann;Julie Gibbs;Louise Ince;Andrew Loudon
  • 通讯作者:
    Andrew Loudon
Photoperiod and torpor influence clock gene expression in the Djungarian hamster (<em>Phodopus sungorus</em>) heart
  • DOI:
    10.1016/j.yjmcc.2006.03.240
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fiona Crawford;Cassandra Hagarty;Stephan Steinlechner;Andrew Loudon
  • 通讯作者:
    Andrew Loudon

Andrew Loudon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Loudon', 18)}}的其他基金

Quantification of protein dynamics driving the circadian clock
驱动生物钟的蛋白质动力学的量化
  • 批准号:
    BB/P017347/1
  • 财政年份:
    2017
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Unravelling the networks that regulate seasonal rhythmicity in the epigenome
揭示表观基因组中调节季节节律的网络
  • 批准号:
    BB/N015584/1
  • 财政年份:
    2016
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Local and systemic circadian cues coordinately regulate innate immunity via an epigenetic circuit.
局部和全身昼夜节律信号通过表观遗传回路协调调节先天免疫。
  • 批准号:
    BB/L000954/1
  • 财政年份:
    2014
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Epigenetic control of seasonal timing
季节时间的表观遗传控制
  • 批准号:
    BB/K003119/1
  • 财政年份:
    2013
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Dissection of a novel molecular pathway involved in seasonal timing in a melatonin-target tissue using an experimental and systems-level approach.
使用实验和系统级方法剖析涉及褪黑激素目标组织季节性计时的新分子途径。
  • 批准号:
    BB/G003033/1
  • 财政年份:
    2008
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Molecular dynamics of circadian timing in a mouse model of human sleep disorder
人类睡眠障碍小鼠模型昼夜节律的分子动力学
  • 批准号:
    BB/E022553/1
  • 财政年份:
    2007
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Regulation of circadian timers in a peripheral tissue the lung and identification of cellular and in vivo physiological pathways
肺周围组织昼夜节律定时器的调节以及细胞和体内生理途径的识别
  • 批准号:
    BB/D004357/1
  • 财政年份:
    2006
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
  • 批准号:
    82304565
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
  • 批准号:
    31900545
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
  • 批准号:
    10676016
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
A novel brain-to-pancreatic islet neural circuit regulates glucose homeostasis
一种新型脑-胰岛神经回路调节葡萄糖稳态
  • 批准号:
    10886883
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
Neural mechanisms regulating glucose homeostasis
调节葡萄糖稳态的神经机制
  • 批准号:
    10634249
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
Neural Substrates Controlling Metabolic and Reproductive State
控制代谢和生殖状态的神经基质
  • 批准号:
    10709217
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
  • 批准号:
    10659880
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
Molecular and cellular pathways driving competency for human vagal neural crest specification
驱动人类迷走神经嵴规范能力的分子和细胞途径
  • 批准号:
    10727766
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
A Neural Control Circuit for Coughing
咳嗽的神经控制电路
  • 批准号:
    10678004
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
Parkinson Disease Neural Circuitry and Gastrointestinal Pathobiology
帕金森病神经回路和胃肠道病理学
  • 批准号:
    10740119
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
Teasing apart the cellular and molecular pathways that regulate cell size during asymmetric neural precursor cleavages
梳理不对称神经前体分裂过程中调节细胞大小的细胞和分子途径
  • 批准号:
    BB/X00208X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
    Research Grant
Neural Circuits Controlling Lacrimation
控制流泪的神经回路
  • 批准号:
    10718512
  • 财政年份:
    2023
  • 资助金额:
    $ 104.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了