Computed microscopy: quantitative, deep-tissue imaging

计算机显微镜:定量、深层组织成像

基本信息

  • 批准号:
    BB/P027008/1
  • 负责人:
  • 金额:
    $ 19.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Optical microscopy is the most widely used imaging tool in laboratories all around the world. Indeed, According to BCC market research, the global optical microscopy market will be worth US$6.3 billion in 2020. Several Nobel prizes have been awarded for contributions made to the development of optical microscopy, including most recently in 2014. There is, however, a major limitation facing optical microscopy: it is difficult, if not impossible, to image tissue hidden beneath layers of overlying tissue. This occurs for the same reason that it is difficult to see clearly through a window covered in rain drops - tissue is highly scattering, like rain drops, and critically degrades image quality. This is important as it prevents in-tact tissue from being imaged in its natural environment, requiring tissue to instead be sliced into thin sections. A variety of approaches have been used in an attempt to overcome this problem. All such approaches are generally similar in that they insert hardware into the microscope in an attempt to compensate for the degradation due to the sample. This is similar to humans using spectacles to overcome imperfections of their eye. The main difference is that opticians are able to precisely determine the imperfections that each eye has, and thus design spectacles which perfectly compensate for them. No such method has been developed for measuring sample induced imperfections, or aberrations, present in microscope images.This project proposes to do just that: measure the imperfections caused by the sample itself. This will be achieved by computing the optical structure of the sample (i.e., how light travels in the sample) via a two stage process. Firstly, the sample will be imaged by a microscope capable of performing rapid three-dimensional imaging called an optical coherence microscope (OCM). OCM works very much like ultrasound imaging, except light is used instead of sound waves. The second step involves developing a sophisticated computational procedure for calculating the sample's optical structure from the OCM image. This will be performed using a recently mathematical model, developed recently by the project team, which allows OCM images to be predicted from a given sample structure. Clearly, our task is to solve the opposite problem: calculate the sample's structure given a measured OCM image. Formal techniques have been established for solving the problem in the opposite fashion which will be adapted specifically for this project.Once the sample's optical structure has been solved, in a follow-on project, existing methods will be employed for restoring optical fluorescence microscope images which have been degraded by the sample itself. This will enable fluorescence microscopy to be performed at depths within tissue which are currently inaccessible. This will be highly advantageous to many biological researchers in the UK and the world.
光学显微镜是世界各地实验室中使用最广泛的成像工具。事实上,根据BCC市场研究,到2020年,全球光学显微镜市场价值将达到63亿美元。多项诺贝尔奖因对光学显微镜发展的贡献而获得,包括最近的2014年。然而,光学显微镜面临着一个主要的限制:即使不是不可能,也很难对隐藏在上层组织下面的组织进行成像。这种情况的原因与透过被雨滴覆盖的窗户很难看清一样-组织像雨滴一样高度散射,严重降低了图像质量。这一点很重要,因为它可以防止完整的组织在其自然环境中成像,需要将组织切成薄片。已经使用了各种方法来试图克服这个问题。所有这些方法通常都是相似的,因为它们将硬件插入显微镜中,试图补偿由于样品引起的退化。这类似于人类使用眼镜来克服眼睛的缺陷。主要的区别是,配镜师能够精确地确定每只眼睛的缺陷,从而设计出完美补偿它们的眼镜。目前还没有这样的方法来测量样品引起的缺陷,或像差,存在于显微镜图像中。本项目提出这样做:测量样品本身引起的缺陷。这将通过计算样品的光学结构(即,光如何在样品中传播)。首先,样品将由能够执行快速三维成像的显微镜成像,称为光学相干显微镜(OCM)。OCM的工作原理非常类似于超声成像,只是使用了光而不是声波。第二步涉及开发一个复杂的计算程序,用于从OCM图像计算样品的光学结构。这将使用最近由项目团队开发的数学模型进行,该模型允许从给定的样品结构预测OCM图像。显然,我们的任务是解决相反的问题:根据测量的OCM图像计算样品的结构。已经建立了正式的技术来解决这个问题的相反的方式,这将是特别适合这个项目。一旦样品的光学结构已经解决了,在一个后续的项目中,现有的方法将被用于恢复光学荧光显微镜图像已被降解的样品本身。这将使荧光显微镜能够在目前无法进入的组织内的深度进行。这将对英国和世界上许多生物研究人员非常有利。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesizing scanning-mode acquisition in full-wave modelling of OCT
在 OCT 全波建模中综合扫描模式采集
  • DOI:
    10.1117/12.2526812
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Macdonald C
  • 通讯作者:
    Macdonald C
Scalable full-wave simulation of coherent light propagation through biological tissue
通过生物组织的相干光传播的可扩展全波模拟
  • DOI:
    10.1109/ipc48725.2021.9592927
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bewick J
  • 通讯作者:
    Bewick J
On the inverse problem in optical coherence tomography.
  • DOI:
    10.1038/s41598-023-28366-w
  • 发表时间:
    2023-01-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Tool for simulating the focusing of arbitrary vector beams in free-space and stratified media.
用于模拟自由空间和分层介质中任意矢量光束聚焦的工具。
  • DOI:
    10.1117/1.jbo.23.9.090801
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Munro PRT
  • 通讯作者:
    Munro PRT
Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation.
  • DOI:
    10.1364/boe.9.003122
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ossowski P;Curatolo A;Sampson DD;Munro PRT
  • 通讯作者:
    Munro PRT
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Munro其他文献

114 On line portal imaging
  • DOI:
    10.1016/0360-3016(95)97620-g
  • 发表时间:
    1995-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Munro
  • 通讯作者:
    Peter Munro
Mo1169 X-RAY PHASE CONTRAST IMAGING FOR STAGING ESOPHAGEAL TUMORS: PRELIMINARY RESULTS FROM THE VIOLIN STUDY
  • DOI:
    10.1016/s0016-5085(20)32710-4
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Wolfson;Jinxing Jiang;Alex Ho;Hazel McBain;Harry Delaney;Mark Hawthorne;Ash Wilson;Lorenzo massimi;Charlotte Maughan-Jones;khaled dawas;borzoueh Mohammadi;Majid Hashemi;Rami Sweis;Yassar A. Qureshi;Matthew Banks;David G. Graham;Rehan Haidry;Sarmed S. Sami;Marco Endrizzi;Peter Munro
  • 通讯作者:
    Peter Munro

Peter Munro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Munro', 18)}}的其他基金

Complete Material Characterisation Through A Single Polychromatic X-ray Scan
通过单次多色 X 射线扫描完成材料表征
  • 批准号:
    EP/X018377/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
Solving Maxwell's equations using deep learning
使用深度学习求解麦克斯韦方程组
  • 批准号:
    EP/V048465/1
  • 财政年份:
    2021
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant
X-ray elastography: a novel approach to breast imaging
X 射线弹性成像:一种新的乳腺成像方法
  • 批准号:
    EP/P005209/1
  • 财政年份:
    2017
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Research Grant

相似国自然基金

TRPV4通道在急性肺损伤中的作用及其机制的研究
  • 批准号:
    81000028
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
  • 批准号:
    30970527
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
根管粪肠球菌的超微结构分析与药物干预研究
  • 批准号:
    30870670
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
显微近红外图像成像方法的研究及其在生物学中的应用
  • 批准号:
    20575076
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
  • 批准号:
    10752248
  • 财政年份:
    2024
  • 资助金额:
    $ 19.2万
  • 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
  • 批准号:
    10715763
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
  • 批准号:
    10639551
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Imaging of HTLV-1 by cryo-CLEM
通过冷冻 CLEM 进行 HTLV-1 成像
  • 批准号:
    10868844
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
ATG2 mediated lipid transport is essential for lipid droplet homeostasis
ATG2 介导的脂质转运对于脂滴稳态至关重要
  • 批准号:
    10679372
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
  • 批准号:
    10649225
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
  • 批准号:
    10727819
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
An Aptamer-directed IgG1-Fc Drug Conjugate (AFDC) for Treating Pancreatic Cancer
用于治疗胰腺癌的适体导向 IgG1-Fc 药物偶联物 (AFDC)
  • 批准号:
    10761053
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Molecular Dissection of Mitochondria-Organelle Interactions
线粒体-细胞器相互作用的分子解剖
  • 批准号:
    10851148
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了