Bioreactor capability for the Plant and Microbe DNA Foundry

植物和微生物 DNA 铸造厂的生物反应器能力

基本信息

  • 批准号:
    BB/R000433/1
  • 负责人:
  • 金额:
    $ 45.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Synthetic biology is the application of engineering paradigms to biological systems. Researchers are using this paradigm to design, build and test biological 'circuits' which can contain functionality taken from multiple genes or systems.Using this methodology we are able to optimise systems for the production of bioactives - chemicals of high value, synthesised in living cells, that can be made more cost-effectively or in a more environmentally friendly fashion than with normal chemical engineering approaches.One of the biggest challenges is when we need to test multiple aspects of a system. For instance a promoter, a unit of DNA which turns genes on or off, may work well in the root of a plant, but not well in the leaf. If we wanted to make systematic modifications to a promoter so that it can be used in a predictable fashion, we may wish to make, or synthesise, many versions of it. The high-throughput synthetic biology laboratories at the Earlham Institute are designed to tackle this problem using automation, so that we can complete this task more quickly and more cost-effectively than if we were doing the process manually.However, after we have made all these versions of a promoter, we will need to test its activity by taking measurements in a living system. The challenge is how we can do this in an automated and high-throughput manner. Automated micro-bioreactors are small scale growth chambers for growing cells, and taking measurements of those cells as they grow. They can control the growing environment, by raising or reducing oxygen or carbon dioxide, they can control the nutrients in the growth chambers, and they can measure aspects of the cells as they grow - including how much oxygen they are using, how fast they grow, but critically they can also take measurements of fluorescence.Sometimes the best way to study the performance of a small part of a cells activity is to 'tag' it with a fluorescent marker. Commonly this is GFP or 'green fluorescent protein'. This is a non-toxic way of marking the element of a cells activity. Being able to assess fluorescence in a system is a critical part of taking these high-throughput measurements.The Earlham Institute is a leading research institute in the study of the genetics of living systems, and houses some of the UK's most advanced laboratories for these kind of studies. This project will extend our capacity and capability, in a way that enables us to share it with the entire UK research community. The Earlham Institute has been providing access to advanced biological sciences equipment for over 7 years to the UK research community through the BBSRC 'National Capability in Genomics' and prides itself on how we share our equipment, data and knowledge in transparent and open ways.
合成生物学是工程范式在生物系统中的应用。研究人员正在使用这种范式来设计,建立和测试可以包含从多个基因或系统的功能的生物学“电路”。使用这种方法,我们能够优化生物活性的系统的系统 - 高价值的化学物质,在活细胞中合成的化学物质,在成本效率上或更具环境友好型在正常的化学工程方面可以使多种化学型在多个系统中具有更大的化学作用。例如,启动子是一个开关或关闭基因的DNA单元,可以很好地在植物的根部工作,但在叶片中效果不佳。如果我们想对启动子进行系统的修改,以便可以以可预测的方式使用它,我们可能希望制作或综合其许多版本。厄尔汉姆研究所(Earlham Institute)的高通量合成生物学实验室旨在使用自动化解决此问题,以便与手动进行该过程相比,我们可以更快,更具成本效益地完成此任务。但是,在我们制作了所有这些版本的启动子之后,我们将需要通过在生活系统中测量其活动来测试其活动。挑战是我们如何以自动化和高通量方式进行此操作。自动化的微生物反应器是用于生长细胞的小规模生长室,并随着这些细胞的生长进行测量。 They can control the growing environment, by raising or reducing oxygen or carbon dioxide, they can control the nutrients in the growth chambers, and they can measure aspects of the cells as they grow - including how much oxygen they are using, how fast they grow, but critically they can also take measurements of fluorescence.Sometimes the best way to study the performance of a small part of a cells activity is to 'tag' it with a fluorescent marker.通常这是GFP或“绿色荧光蛋白”。这是标记细胞活性元素的一种无毒方法。能够在系统中评估荧光是进行这些高通量测量值的关键部分。厄尔汉姆研究所是研究生物系统遗传学研究的领先研究所,并设有一些英国最先进的实验室进行此类研究。该项目将扩大我们的能力和能力,使我们能够与整个英国研究社区分享它。厄尔汉姆研究所(Earlham Institute)通过BBSRC的“基因组学国家能力”为英国研究社区提供了7年以上的高级生物科学设备,并以我们如何以透明和开放方式共享设备,数据和知识而感到自豪。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicola Joan Patron其他文献

Nicola Joan Patron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicola Joan Patron', 18)}}的其他基金

Engineering gene regulatory networks to design disease-resistant crops
工程基因调控网络设计抗病作物
  • 批准号:
    BB/Y007786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
21ENGBIO - Engineering Nucleosome Positioning in Plants
21ENGBIO - 工程核小体在植物中的定位
  • 批准号:
    BB/W010933/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
18 BTT EAGER - Engineering complex traits using targeted, multiplexed genetic and epigenetic mutagenesis
18 BTT EAGER - 使用定向、多重遗传和表观遗传诱变设计复杂性状
  • 批准号:
    BB/S020853/1
  • 财政年份:
    2019
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Germany-UK: The Portable Organelle Project (TPOP)
德国-英国:便携式细胞器项目 (TPOP)
  • 批准号:
    BB/R021074/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
17-ERACoBioTech - SUSPHIRE - Sustainable Bioproduction of Pheromones for Insect Pest Control in Agriculture
17-ERACoBioTech - SUPHIRE - 用于农业害虫防治的信息素可持续生物生产
  • 批准号:
    BB/R021554/1
  • 财政年份:
    2018
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
An improved bioproduction system for proteins and small molecules
改进的蛋白质和小分子生物生产系统
  • 批准号:
    BB/P010490/1
  • 财政年份:
    2017
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant

相似国自然基金

植物SOK43蛋白调控愈伤形成能力的分子机理
  • 批准号:
    32170317
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
AMF调控植物激素增强入侵植物抗病虫能力的入侵机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
陕北矿区排土场边坡先锋植物根-土互作对土壤抗侵蚀能力的影响
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    36 万元
  • 项目类别:
生理整合对克隆植物抗虫害能力的影响
  • 批准号:
    32101261
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AMF调控植物激素增强入侵植物抗病虫能力的入侵机理研究
  • 批准号:
    32171509
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

都市域に生育するコケ植物の重金属集積能力
城市苔藓植物重金属富集能力
  • 批准号:
    24K07735
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
  • 批准号:
    DP240103385
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Discovery Projects
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
急変する気象条件に対する植物適応能力を強化する超音波処理技術の開発
开发超声波处理技术,增强植物适应快速变化的天气条件的能力
  • 批准号:
    22K05611
  • 财政年份:
    2022
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
日和見感染で害虫防除:基礎免疫能力を低下させる殺虫剤開発
通过机会性感染控制害虫:开发降低基本免疫能力的杀虫剂
  • 批准号:
    22K19165
  • 财政年份:
    2022
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了