Controlling pluripotency and differentiation in plant cells: the KNOX-TCP regulatory module

控制植物细胞的多能性和分化:KNOX-TCP 调节模块

基本信息

  • 批准号:
    BB/R008752/1
  • 负责人:
  • 金额:
    $ 47.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Development in multicellular organisms involves the differentiation of specific cell-, tissue- and organ-types from progenitor stem cell populations. In plants such as Arabidopsis thaliana, a commonly used model organism used in the study of plant developmental biology, pluripotent stem cells are located in a pool of undifferentiated cells termed the shoot apical meristem (SAM), which gives rise to lateral organs such as leaves. Leaf cells subsequently undergo differentiation associated with their specialised functions, such as photosynthesis and gas exchange. Numerous genes have been identified that are involved in controlling the formation and sustained function of the SAM. Some genes act to confer a state of pluripotency - that is to say, an undifferentiated state with the ability to form any type of cell - while others promote differentiation into specialised cell types. Most of the genes currently known to regulate SAM function encode a type of protein called a transcription factor (TF). TFs are proteins that regulate the expression of other so-called 'target' genes by activating or repressing their expression - specifically by controlling the transcription of a gene from DNA into RNA, which is subsequently translated into a functional protein. Of the many different types of TF that have been shown to be involved in SAM regulation, the KNOTTED1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a TF that is absolutely critical for the specification and maintenance of pluripotent cell fate in the SAM. My recent work has shown that STM represses the expression of a different type of TF belonging to the TCP family (TCP4), which is involved in promoting differentiation in leaves. Interestingly, TCP TFs have previously been shown to repress the expression of STM. Hence, I have revealed a mutually antagonistic relationship between these two important classes of TF: STM promotes pluripotency and represses TCP expression in the SAM, thereby preventing meristem cell differentiation, while TCP represses STM expression and promotes differentiation in developing leaves. Loss of STM function or elevated levels of TCP causes the cells of the SAM to differentiate and cease activity. Conversely, loss of TCP mimics the effect of elevated STM expression, such as inhibited leaf differentiation. Given these similarities, one might expect that STM and TCPs regulate, in an antagonistic manner, a common set of target genes that lead to cells adopting pluripotent or differentiated fates.The control of pluripotency and differentiation is the central theme of this research project. Specifically, this project seeks to understand how cell fate decisions are made in the SAM by studying the interplay between STM and TCP, identifying TCP-regulated target genes and comparing these with those previously identified for STM. Using fluorescent 'reporters' for these two genes, changes in STM and TCP expression in the living SAM will be monitored when levels of TCP or STM levels are artificially increased or decreased respectively, revealing in which cells their expression changes and the how quickly this occurs. Having previously identified the STM target genes that promote pluripotency, characterisation of TCP target genes will enable the identification of target genes that promote differentiation. Comparative analyses will reveal which genes are competitively regulated by STM and TCP. These would likely represent key players for the adoption of pluripotent or differentiated cell fates and would represent a considerable advance in our understanding of the control of pluripotency and differentiation in plant development.
多细胞生物体的发育涉及从祖细胞干细胞群分化出特定的细胞、组织和器官类型。在植物如拟南芥(Arabidopsis thaliana)(植物发育生物学研究中常用的模式生物)中,多能干细胞位于称为茎顶端分生组织(SAM)的未分化细胞池中,其产生侧部器官如叶。叶细胞随后经历与其专门功能相关的分化,如光合作用和气体交换。已经鉴定出许多基因参与控制SAM的形成和持续功能。一些基因的作用是赋予一种多能性状态--也就是说,一种具有形成任何类型细胞能力的未分化状态--而另一些基因则促进分化成专门的细胞类型。目前已知的大多数调节SAM功能的基因编码一种称为转录因子(TF)的蛋白质。TF是通过激活或抑制其他所谓的“靶”基因的表达来调节其表达的蛋白质-特别是通过控制基因从DNA转录成RNA,随后翻译成功能蛋白质。在已被证明参与SAM调控的许多不同类型的TF中,KNOTTED 1样同源框(KNOX)基因SHOOT MERISTEMLESS(STM)编码的TF对于SAM中多能细胞命运的特化和维持是绝对关键的。我最近的工作表明,STM抑制属于TCP家族(TCP 4)的不同类型的TF的表达,该家族参与促进叶片的分化。有趣的是,TCP TF先前已被证明抑制STM的表达。因此,我已经揭示了这两个重要的TF类之间的相互拮抗关系:STM促进多能性和抑制TCP的SAM中的表达,从而防止分生组织细胞分化,而TCP抑制STM的表达,促进发育中的叶片分化。STM功能丧失或TCP水平升高导致SAM细胞分化并停止活动。相反,TCP的损失模拟STM表达升高的效果,如抑制叶分化。鉴于这些相似之处,人们可能会认为STM和TCP以拮抗的方式调节一组共同的靶基因,导致细胞采用多能性或分化的命运。具体而言,该项目旨在通过研究STM和TCP之间的相互作用,确定TCP调节的靶基因并将其与先前为STM确定的靶基因进行比较,来了解SAM中细胞命运的决定。使用这两个基因的荧光“报告者”,当TCP或STM水平分别人为增加或降低时,将监测活SAM中STM和TCP表达的变化,揭示它们的表达在哪些细胞中变化以及变化发生的速度。先前已经鉴定了促进多能性的STM靶基因,TCP靶基因的表征将使得能够鉴定促进分化的靶基因。比较分析将揭示哪些基因被STM和TCP竞争性调控。这些可能代表了采用多能或分化细胞命运的关键参与者,并代表了我们对植物发育中多能性和分化控制的理解的相当大的进步。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism.
  • DOI:
    10.1038/s41598-022-07387-x
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Liao P;Lechon T;Romsdahl T;Woodfield H;Fenyk S;Fawcett T;Wallington E;Bates RE;Chye ML;Chapman KD;Harwood JL;Scofield S
  • 通讯作者:
    Scofield S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Scofield其他文献

Increasing oil content in Brassica oilseed species
增加油菜籽品种中的含油量
  • DOI:
    10.1016/j.plipres.2024.101306
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    14.900
  • 作者:
    Randall J. Weselake;David A. Fell;Xiaoyu Wang;Simon Scofield;Guanqun Chen;John L. Harwood
  • 通讯作者:
    John L. Harwood
Regulation of meristem and hormone function revealed through analysis of directly-regulated SHOOT MERISTEMLESS target genes
  • DOI:
    10.1038/s41598-024-83985-1
  • 发表时间:
    2025-01-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Tamara Lechon;Nicholas A. Kent;James A. H. Murray;Simon Scofield
  • 通讯作者:
    Simon Scofield
KNOX Gene Function in Plant Stem Cell Niches
  • DOI:
    10.1007/s11103-005-4478-y
  • 发表时间:
    2006-04-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Simon Scofield;James A. H. Murray
  • 通讯作者:
    James A. H. Murray

Simon Scofield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Scofield', 18)}}的其他基金

Enhancing essential oil feedstocks and high-value products from Mentha species for local Ugandan economies.
为乌干达当地经济增加精油原料和薄荷属高价值产品。
  • 批准号:
    BB/S011501/1
  • 财政年份:
    2019
  • 资助金额:
    $ 47.05万
  • 项目类别:
    Research Grant

相似国自然基金

调控拟南芥体细胞再生关键基因的鉴定
  • 批准号:
    32000507
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
  • 批准号:
    10587354
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Molecular Mechanisms Guiding TRIM28 Contribution to Determination
指导 TRIM28 对测定的分子机制
  • 批准号:
    10751859
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Establishment of a multi-center biobank of patient-specific induced pluripotent stem cells for pediatric sepsis research
建立用于儿童脓毒症研究的患者特异性诱导多能干细胞多中心生物库
  • 批准号:
    10649014
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
The biogenesis and functions of pre-meiotic small RNAs in male reproductive development in maize
减数分裂前小RNA在玉米雄性生殖发育中的生物发生和功能
  • 批准号:
    10718996
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Diversity in a Dish: Pluripotent Stem Cells in Genetic Analysis and Disease Modeling
培养皿中的多样性:遗传分析和疾病建模中的多能干细胞
  • 批准号:
    10608751
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Partial epigenetic reprogramming of retinal pigment cells in age-related degeneration, dysfunction, and injury
视网膜色素细胞在年龄相关变性、功能障碍和损伤中的部分表观遗传重编程
  • 批准号:
    10644270
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Chicken embryonic stem cells
鸡胚胎干细胞
  • 批准号:
    10719082
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Roles of the LTR5_Hs human-specific endogenous retroviruses in primordial germ cells
LTR5_Hs 人类特异性内源性逆转录病毒在原始生殖细胞中的作用
  • 批准号:
    10573853
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Dissecting enhancer-promoter looping and gene induction dynamics in differentiation
剖析分化过程中的增强子-启动子循环和基因诱导动态
  • 批准号:
    10642028
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
Investigating the role of nuclear mechanics in the regulation of chromatin structure and embryonic cell fate
研究核力学在染色质结构和胚胎细胞命运调节中的作用
  • 批准号:
    10723483
  • 财政年份:
    2023
  • 资助金额:
    $ 47.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了