An upright confocal microscope for multidisciplinary research

用于多学科研究的正置共焦显微镜

基本信息

  • 批准号:
    BB/R014361/1
  • 负责人:
  • 金额:
    $ 36.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The desire to visualise cellular structures and processes has been a central aim of biologists ever since the development of the light microscope and the advances in cell biology are intrinsically linked to the advances in microscope technology. The development of synthetic fluorescent probes made it possible to visualize the location of individual proteins and complexes within the cell and the development of different coloured probes allowed multiple proteins to be studied at the same time. This gives an insight not only into the localization of the proteins within the cell but also their interactions with other proteins. Along with this, the development of the laser scanning confocal microscope, using a detection pinhole to reject out of focus light, allowed researchers to see these fluorescent probes inside thick samples and obtain a "free from blur" optical section and three-dimensional model of the sample. The ability to visualize protein dynamics in live cells was made possible with the discovery and subsequent sequencing of the green fluorescent protein from jelly fish. Using genetic engineering it is possible to form a protein chimera in which a protein of interest is fused to this fluorescent protein. The now fluorescently tagged protein of interests can then be expressed and observed in live cells. With the development of coloured variants of the jelly fish protein (and coral proteins), it has become possible to follow multiple different proteins inside living cells, tissues and even whole organism and has allowed researchers to use optical approaches to gain an understanding of how proteins interact, how cells communicate and how cells and tissues react to the their external environment. Microscopes can come as essentially two models with respect to access to the sample to be imaged. An inverted model accesses the sample plated in dishes from the bottom and high resolution imaging needs imaging through thin transparent surfaces such as glass. An upright microscope accesses samples placed in dishes directly from the top with the use of lenses that can be "dipped" (hence dipping lenses) in the culture media. The use of this approach enables imaging of samples without additional interface which can be thick or opaque etc. Such approach allows imaging of samples that grow in a three-dimensional environment resembling their natural in vivo environment. Such environments can be original tissue or in-vivo like engineered biomaterials. These new developments provide a realistic insight into the role of how cells behave in their environment in health and disease, and an upright confocal microscope provides the ideal platform and critical for imaging cells under such modified environments.Whist we currently have a Leica SP5 upright confocal microscope, it is at the end of its useful life and lacks sensitivity which is critical for imaging combined with new other technologies such as CRISPR, where single copies of fluorescently labelled protein genes are targeted to specific locations within the genome of cells and organisms. Although this targeted approach offers enormous potential for understanding the role of individual proteins in the cell, their level of expression is often so low that the resulting fluorescent signal is very weak. The latest generation of upright confocal microscopes provide the ability to perform these sophisticated multi-colour microscope experiments even on thick samples due to their improved light efficiency and detector sensitivity. Here we propose to replace our old out-dated upright microscope with a new state-of-the-art Leica SP8 upright confocal microscope. This will allow improved delivery of a core service to a productive set of around 67 well-funded research groups who heavily use the current instrument and will provide them with access to a system with improved flexibility, improved sensitivity and improved resolution.
自从光学显微镜的发展以及细胞生物学的进步与显微镜技术的进步有着内在的联系以来,对细胞结构和过程进行可视化的愿望一直是生物学家的中心目标。合成荧光探针的开发使得细胞内单个蛋白质和复合物的位置可视化成为可能,并且不同颜色探针的开发允许同时研究多种蛋白质。这不仅可以深入了解蛋白质在细胞内的定位,还可以了解它们与其他蛋白质的相互作用。与此同时,激光扫描共焦显微镜的发展,使用检测针孔来抑制离焦光,使研究人员能够看到厚样品内的这些荧光探针,并获得样品的“无模糊”光学切片和三维模型。随着水母绿色荧光蛋白的发现和随后的测序,使活细胞中蛋白质动态可视化的能力成为可能。使用基因工程可以形成蛋白质嵌合体,其中感兴趣的蛋白质与该荧光蛋白融合。然后可以在活细胞中表达和观察现在荧光标记的目标蛋白质。随着水母蛋白(和珊瑚蛋白)的彩色变体的发展,追踪活细胞、组织甚至整个有机体内的多种不同蛋白质成为可能,并使研究人员能够使用光学方法来了解蛋白质如何相互作用、细胞如何沟通以及细胞和组织如何对其外部环境做出反应。就获取要成像的样本而言,显微镜本质上可以分为两种型号。倒置模型从底部访问镀在培养皿中的样品,高分辨率成像需要通过薄的透明表面(例如玻璃)进行成像。正置显微镜使用可以“浸入”(因此浸入透镜)在培养基中的透镜直接从顶部访问放置在培养皿中的样品。使用这种方法能够在没有可能较厚或不透明等的额外界面的情况下对样品进行成像。这种方法允许对在类似于其自然体内环境的三维环境中生长的样品进行成像。这种环境可以是原始组织或体内的工程生物材料。这些新进展为细胞在健康和疾病环境中的行为提供了现实的见解,而直立式共聚焦显微镜为在这种修改的环境下对细胞进行成像提供了理想的平台和关键。虽然我们目前拥有 Leica SP5 直立式共聚焦显微镜,但它已达到其使用寿命,并且缺乏灵敏度,这对于与 CRISPR 等新技术结合使用成像至关重要,其中荧光标记蛋白的单拷贝 基因针对细胞和生物体基因组内的特定位置。尽管这种靶向方法为理解细胞中单个蛋白质的作用提供了巨大的潜力,但它们的表达水平通常很低,导致产生的荧光信号非常弱。最新一代的直立共焦显微镜由于其改进的光效率和检测器灵敏度,甚至能够在厚样品上执行这些复杂的多色显微镜实验。在这里,我们建议用新型的最先进的 Leica SP8 正置共焦显微镜替换旧的过时的正置显微镜。这将有助于改善向大约 67 个资金充足的研究小组提供的核心服务,这些研究小组大量使用当前的仪器,并将为他们提供一个具有更高灵活性、更高灵敏度和更高分辨率的系统。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tensin3 interaction with talin drives the formation of fibronectin-associated fibrillar adhesions.
Tensin3与塔林的相互作用驱动了与纤连蛋白相关的原纤维粘附的形成。
Applying Tensile and Compressive Force to Xenopus Animal Cap Tissue.
对爪蟾动物帽组织施加拉力和压力。
  • DOI:
    10.1101/pdb.prot105551
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goddard GK
  • 通讯作者:
    Goddard GK
Abrogation of TGF-beta signalling in TAGLN expressing cells recapitulates Pentalogy of Cantrell in the mouse.
  • DOI:
    10.1038/s41598-018-21948-z
  • 发表时间:
    2018-02-26
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Aldeiri B;Roostalu U;Albertini A;Behnsen J;Wong J;Morabito A;Cossu G
  • 通讯作者:
    Cossu G
LRRC8A is dispensable for a variety of microglial functions and response to acute stroke.
  • DOI:
    10.1002/glia.24156
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
  • 通讯作者:
Circadian control of the secretory pathway maintains collagen homeostasis.
  • DOI:
    10.1038/s41556-019-0441-z
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    21.3
  • 作者:
    Chang J;Garva R;Pickard A;Yeung CC;Mallikarjun V;Swift J;Holmes DF;Calverley B;Lu Y;Adamson A;Raymond-Hayling H;Jensen O;Shearer T;Meng QJ;Kadler KE
  • 通讯作者:
    Kadler KE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christoph Ballestrem其他文献

Co-stimulation with piezoelectric PVDF films and low intensity pulsed ultrasound enhances osteogenic differentiation
与压电聚偏氟乙烯薄膜和低强度脉冲超声共同刺激可增强成骨分化
  • DOI:
    10.1016/j.bioadv.2025.214283
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Biranche Tandon;Jose R. Aguilar Cosme;Ruikang Xue;Kasama Srirussamee;Julio Aguilar-Tadeo;Christoph Ballestrem;Jonny J. Blaker;Sarah H. Cartmell
  • 通讯作者:
    Sarah H. Cartmell
Talin gets SHANKed in the fight for integrin activation
塔利恩在整合素激活的战斗中被重创。
  • DOI:
    10.1038/ncb3501
  • 发表时间:
    2017-03-31
  • 期刊:
  • 影响因子:
    19.100
  • 作者:
    Paul Atherton;Christoph Ballestrem
  • 通讯作者:
    Christoph Ballestrem

Christoph Ballestrem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christoph Ballestrem', 18)}}的其他基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant
How does the desmosome-actin crosstalk regulate desmosome function?
桥粒-肌动蛋白串扰如何调节桥粒功能?
  • 批准号:
    BB/X008827/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant
Orchestration of adhesion signalling networks by the tensins and their impact in cell motility and matrix remodelling.
张力蛋白对粘附信号网络的协调及其对细胞运动和基质重塑的影响。
  • 批准号:
    BB/V016326/1
  • 财政年份:
    2022
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant
Determination of the mechanisms of desmosome loss during EMT
EMT 过程中桥粒丢失机制的确定
  • 批准号:
    BB/R001707/1
  • 财政年份:
    2018
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant
Orchestration of adhesion signalling by the mechanosensors talin and vinculin.
通过机械传感器 talin 和 vinculin 协调粘附信号。
  • 批准号:
    BB/P000681/1
  • 财政年份:
    2016
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant
The role of talin and vinculin in neuronal mechanosensing.
踝蛋白和纽蛋白在神经元机械传感中的作用。
  • 批准号:
    BB/M020630/1
  • 财政年份:
    2015
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant
Vinculin and associated signalling networks in the regulation of cell motility
纽蛋白和相关信号网络在细胞运动调节中的作用
  • 批准号:
    BB/G004552/1
  • 财政年份:
    2009
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Research Grant

相似国自然基金

化石硅藻微构造与古环境和古气候研究
  • 批准号:
    40442004
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

High Resolution Confocal light microscope with incubation chamber (Teilfinanzierung(
带孵化室的高分辨率共焦光学显微镜(部分资助(
  • 批准号:
    538776603
  • 财政年份:
    2024
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
Confocal laser scanning microscope
共焦激光扫描显微镜
  • 批准号:
    540575830
  • 财政年份:
    2024
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
Confocal microscope
共焦显微镜
  • 批准号:
    538923994
  • 财政年份:
    2024
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
Confocal laser scanning microscope with fast fluorescence lifetime imaging module
具有快速荧光寿命成像模块的共焦激光扫描显微镜
  • 批准号:
    540803833
  • 财政年份:
    2024
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
Inverted confocal-laser-scanning-microscope with an extended excitation-emission spectrum
具有扩展激发发射光谱的倒置共焦激光扫描显微镜
  • 批准号:
    525029482
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
Live cell spinning disk confocal microscope with single molecule localization module
具有单分子定位模块的活细胞转盘共聚焦显微镜
  • 批准号:
    514497685
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
Lumicks C-Trap Optical Tweezers with Confocal Fluorescence Microscope
Lumicks C-Trap 光镊与共焦荧光显微镜
  • 批准号:
    10629714
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Acquisition of a Zeiss LSM 900 confocal microscope with Airyscan 2 for an Imaging and Microscopy Core
购买配备 Airyscan 2 的 Zeiss LSM 900 共焦显微镜作为成像和显微镜核心
  • 批准号:
    10632858
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
Confocal laser scanning microscope
共焦激光扫描显微镜
  • 批准号:
    517966069
  • 财政年份:
    2023
  • 资助金额:
    $ 36.03万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了