Artificial Intelligence Tools For Automatic Single Molecule Analysis

用于自动单分子分析的人工智能工具

基本信息

  • 批准号:
    BB/R022143/1
  • 负责人:
  • 金额:
    $ 19.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

*What will we do?*Develop and distribute an "artificial intelligence" application to allow fellow scientists to analyze a type of data ("single molecule data") difficult to analyse with existing methods. *Machines can learn, but they take a lot of training*Machines can recognise speech in devices from Amazon's "Alexa" to call centres using artificial intelligence ("AI"). As an example, just ask Alexa what "AI" is, and she will tell you. This has only been possible recently as computers have become sufficiently powerful. The technologies to do it are collectively called "machine learning". One advantage of such "machines" is that they can answer questions unsupervised by people. One limitation is that they require enormous labelled datasets to "learn" in the first place. This is called "training data". We have devised, a "trick" to generate massive datasets, by playing simulated data into recording apparatus and then recording back the resulting signal. Because we control the entire process the data is inherently "labelled" in the way necessary to train intelligent machines. With this technique together with the use of Google Brain's freely available "TensorFlow" AI library, we can create applications that analyze data for us.*Why "Single Molecules"*Many molecules found in animal cells behave as switches. Their individual "on" or "off" state can then be measured as either pulses of light or electrical current giving real-time mechanistic insight. They are important throughout biology with the estimated Global market for drugs targeting one family of these molecular switches (ion channels) alone being $11.5bn. The flip-side is that experiments measuring these "switches" generate big datasets that are difficult and laborious to analyse.*Could single molecule biology contribute to tackling diseases of age, climate change, anti-bacterial resistance and global terrorism?*In short "Yes": Ion channel malfunction in particular, is responsible for many age-related diseases. Interest from Pharma is enormous because they are targets for many drugs from sedatives to heart medicines. Certain insecticides act via their ion channels, but these are toxic to people too. One such agent, the nerve toxin "VX" hit the news when it was used in the assassination of Kim Jong-Nam. Even the relatively safe insect repellent citronella repels mosquitoes by activating ion channels. Permethrin-resistant mosquitoes are resistant because they have a specific mutation in an ion channel creating a real problem in malaria control. Plants too express a range of ion channels with critical roles including salt regulation. Since climate change is increasing the salination of many agricultural regions, there is keen interest in whether biological modification of root ion channels could promote survival of crops in salt-rich soils. Ion channels have also been studied in synthetic biology because they can be activated by chemicals at concentrations far lower than that of other sensors. Many uses have been proposed for these, such as detection of explosives, biological weapons, narcotics or certain diseases. A recent discovery is that bacteria also "talk" to each other by an ion channel dependent biofilm communication network that is necessary for their survival. This has raised the possibility that ion channel blocking drugs could constitute a new generation of antibacterials that are less susceptible to resistance. So indeed single molecule biology could contribute to study of several grand challenges in society. In each case, a limiting factor is currently the time required to study the large datasets generated by these molecules. *How can we help?*We will create a simple to use AI-based analysis application to allow rapid analysis of these data. These will be especially useful to industrial partners who produce large data sets during drug development but have few tools available to analyze this fully.
*我们该怎么办? *机器可以学习,但是他们需要大量的培训*机器可以识别亚马逊“ Alexa”设备中的语音,以使用人工智能(“ AI”)呼叫中心。例如,请问Alexa是什么“ AI”,她会告诉您。由于计算机变得足够强大,这才是最近才有可能的。这样做的技术集体称为“机器学习”。这种“机器”的优点是,他们可以回答人们无人看出的问题。一个限制是,他们首先需要大量标记的数据集“学习”。这称为“培训数据”。我们已经设计了一个“技巧”来生成大量数据集,通过播放模拟数据录制设备,然后录制结果信号。因为我们控制了整个过程,所以数据本质上是按照训练智能机器所需的方式“标记”的。通过这种技术,以及使用Google Brain免费获得的“ Tensorflow” AI库的使用,我们可以创建为我们分析数据的应用程序。然后可以将他们的个体“在”或“关闭”状态作为光或电流的脉冲来测量实时机械洞察力。它们在整个生物学上都很重要,仅针对这些分子开关(ION渠道)的药物的估计全球市场(ION渠道)为115亿美元。另一方面,测量这些“开关”的实验产生了很难分析的大数据集。 Pharma的兴趣是巨大的,因为它们是从镇静剂到心脏药物的许多药物的目标。某些杀虫剂通过其离子通道起作用,但它们也对人有毒。一位这样的经纪人,神经毒素“ VX”被用来被暗杀时的新闻。即使是相对安全的驱虫剂香龙,也通过激活离子通道排斥蚊子。抗氯菊酯的蚊子具有抵抗力,因为它们在离子通道中具有特定的突变,从而在疟疾控制中产生了真正的问题。植物也表达一系列具有关键作用在内的离子通道,包括盐调节。由于气候变化正在增加许多农业地区的盐度,因此对根离子通道的生物修饰是否可以促进农作物在富含盐的土壤中的生存感,这引起了人们的兴趣。还研究了合成生物学的离子通道,因为它们的浓度远低于其他传感器的化学物质可以激活它们。已经提出了许多用途,例如发现炸药,生物武器,麻醉品或某些疾病。最近的发现是,细菌还通过离子渠道依赖的生物膜通信网络互相“交谈”,这是其生存所必需的。这增加了离子通道阻断药物可能构成新一代的抗菌物质的可能性,这些抗菌物质不太容易受到抗性的影响。因此,确实,单分子生物学可以为研究社会的几个巨大挑战做出贡献。在每种情况下,限制因素当前是研究这些分子产生的大数据集所需的时间。 *我们如何提供帮助?*我们将创建一个易于使用基于AI的分析应用程序,以快速分析这些数据。这些对于在药物开发过程中生产大量数据但几乎没有可用的工具来完全分析的工业伙伴对工业伙伴特别有用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CVS role of TRPV: from single channels to HRV assessment
TRPV 的 CVS 作用:从单一通道到 HRV 评估
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    O'Brien Fiona
  • 通讯作者:
    O'Brien Fiona
DeepGANnel: Synthesis of fully annotated single molecule patch-clamp data using generative adversarial networks.
  • DOI:
    10.1371/journal.pone.0267452
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ball STM;Celik N;Sayari E;Abdul Kadir L;O'Brien F;Barrett-Jolley R
  • 通讯作者:
    Barrett-Jolley R
Comparison of Deep Learning Models for Fully Automated Single Channel Idealization
全自动单通道理想化深度学习模型的比较
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ball Sam
  • 通讯作者:
    Ball Sam
Discriminant Analysis of Principle Component analyses of Physiological Data
生理数据主成分分析的判别分析
  • DOI:
    10.1101/2020.01.09.899898
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haidar O
  • 通讯作者:
    Haidar O
Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data
Deep-Channel 使用深度神经网络从膜片钳数据中检测单分子事件
  • DOI:
    10.1101/767418
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Celik N
  • 通讯作者:
    Celik N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Barrett-Jolley其他文献

A Gadolinium-Sensitive Non-Specific Cation Channel In Canine Articular Chondrocytes
  • DOI:
    10.1016/j.bpj.2008.12.3541
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Lewis;Richard Barrett-Jolley
  • 通讯作者:
    Richard Barrett-Jolley
Models Of Paraventricular Nucleus (PVN) Sympathetic Neurone Modulation by Glucose and Hypoglycaemia
  • DOI:
    10.1016/j.bpj.2009.12.756
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Lewis;Alexia Fitzmaurice Mills;Richard Barrett-Jolley
  • 通讯作者:
    Richard Barrett-Jolley
Anion channel activity in chondrocytes analyzed using in vitro osteoarthritis model.
使用体外骨关节炎模型分析软骨细胞中的阴离子通道活性。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosuke Kumagai;Futoshi Toyoda;Caroline Staunton;Tsutomu Maeda;Hitoshi Tanigawa;Noriaki Okumura;Shinji Imai;Richard Barrett-Jolley
  • 通讯作者:
    Richard Barrett-Jolley
Caveolin-1 Inhibits Vascular K<sub>ATP</sub> Channels by Modulating Channel Sensitivity to MgADP
  • DOI:
    10.1016/j.bpj.2009.12.3830
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lowri M. Davies;Gregor I. Purves;Richard Barrett-Jolley;Caroline Dart
  • 通讯作者:
    Caroline Dart
Volume Control in the PVN: A Role for TRPV4
  • DOI:
    10.1016/j.bpj.2011.11.2982
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Claire Feetham;Richard Barrett-Jolley
  • 通讯作者:
    Richard Barrett-Jolley

Richard Barrett-Jolley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Barrett-Jolley', 18)}}的其他基金

Maestro Pro multiwell microelectrode array for the University of Liverpool electrophysiology suite: Cell physiology meets high throughput.
适用于利物浦大学电生理学套件的 Maestro Pro 多孔微电极阵列:细胞生理学满足高通量要求。
  • 批准号:
    BB/X019357/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Deep Learning Ultra Low-Frequency Heart Rate Variability from raw ECG
根据原始心电图深度学习超低频心率变异
  • 批准号:
    BB/S008136/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Aquaporins: A hole in our understanding of hydrogen peroxide regulation
水通道蛋白:我们对过氧化氢调节理解的一个漏洞
  • 批准号:
    BB/T002115/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Japan Partnering Award: The paraventricular nucleus of the hypothalamus; networks and mathematical models.
日本合作奖:下丘脑室旁核;
  • 批准号:
    BB/S020772/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Role of Paraventricular NK1 Receptor Expressing Spinally-Projecting Neurons in Cardiovascular Control
表达脊髓投射神经元的室旁 NK1 受体在心血管控制中的作用
  • 批准号:
    BB/N003020/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant

相似国自然基金

染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
KCNQ2基因变异导致智力障碍的致病机制研究
  • 批准号:
    82301347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新烟碱类农药通过肠道菌群影响儿童智力发育的机制研究
  • 批准号:
    22366007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
MTOR基因突变异常激活mTORC2-PKC信号通路导致智力障碍-巨脑畸形综合征的机制研究
  • 批准号:
    82302096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Enabling AI-based Mouse Genetic Discovery
实现基于人工智能的小鼠基因发现
  • 批准号:
    10724522
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
  • 批准号:
    10821517
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
  • 批准号:
    10752585
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
  • 批准号:
    10621489
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
  • 批准号:
    10905154
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了