Deep Learning Ultra Low-Frequency Heart Rate Variability from raw ECG
根据原始心电图深度学习超低频心率变异
基本信息
- 批准号:BB/S008136/1
- 负责人:
- 金额:$ 31.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lay Summary:This project will use new "Machine Learning" technologies to analyse Heart Rate Variability.If someone says, "my heart beats steady as a rock", they probably need to be told that this is a warning of the increased likelihood of an impending heart attack. In contrast to many people's intuition, a healthy heart does not beat steadily like a rock (do rocks even beat?) or a metronome, but with an irregular beat. This natural and healthy variation between heartbeats is known as "Heart Rate Variability" (HRV) and is widely measured in sports and medicine, but the causes of the variability are not well understood. In this study, we will develop novel software to facilitate analysis of this irregularity and gain a better understanding of the biology behind it.The heart does have an inbuilt pacemaker that beats with an apparently steady rhythm throughout adult life, but on top of this regular beat, there are two well characterised subconscious mechanisms that can accelerate or decelerate the heart-beat. The behaviour of these two modulatory mechanisms has been extensively studied and causes the heartbeat to change in the second by second or minute by minute timeframe. However, the heartbeat also changes over the course of hours or days and technical limitations have made this very difficult, if not impossible to study at this level of detail in the past. Essentially, human selection and inspection of clean strips of ECG traces was necessary and this was impractical for very large datasets. In the case of rodent ECG traces, it would mean visually inspecting over a million heartbeats per day! We believe that we can make use of new computer and software developments to study the long-term changes in HRV. Specifically "deep learning" a so-called artificial network, and major type of modern artificial intelligence (AI). This is similar software to that allowing Alexa or Siri to answer verbal commands in the latest smart devices. In this project, we will develop this type of software to assist with long-range ECG analysis and use further modern computer models to infer the biological mechanisms underlying this long-term HRV.The applications for our software would be widespread, from health monitoring in people and pets and in fitness monitoring in sports people. Since changes in the way the heart is controlled are a major risk factor in ageing, distribution of such software will benefit the healthy ageing agenda.
简单总结:该项目将使用新的“机器学习”技术来分析心率变异性。如果有人说:“我的心跳像石头一样稳定”,他们可能需要被告知这是即将发生的可能性增加的警告心脏病发作。与许多人的直觉相反,健康的心脏并不像岩石那样稳定地跳动(岩石会跳动吗?)或是节拍器,但节拍不规则心跳之间的这种自然和健康的变化被称为“心率变异性”(HRV),并在体育和医学中广泛测量,但变异性的原因还不清楚。在这项研究中,我们将开发新的软件来帮助分析这种不规则性,并更好地了解其背后的生物学。心脏确实有一个内置的起搏器,在整个成年生活中以明显稳定的节奏跳动,但在这种规则的跳动之上,有两个很好的潜意识机制可以加速或减速心跳。这两种调节机制的行为已经被广泛研究,并导致心跳在一秒接一秒或一分钟接一分钟的时间范围内发生变化。然而,心跳也会在数小时或数天内发生变化,技术限制使得这非常困难,如果不是不可能在过去研究这种细节水平的话。从本质上讲,人类选择和检查ECG迹线的干净条带是必要的,这对于非常大的数据集是不切实际的。在啮齿动物心电图痕迹的情况下,这将意味着每天视觉检查超过一百万次心跳!我们相信,我们可以利用新的计算机和软件开发来研究HRV的长期变化。具体来说,“深度学习”是一种所谓的人工网络,也是现代人工智能(AI)的主要类型。这是类似的软件,允许Alexa或Siri回答最新智能设备中的口头命令。在这个项目中,我们将开发这种类型的软件,以协助远程心电图分析,并使用进一步的现代计算机模型来推断这种长期HRV的生物学机制。我们的软件的应用将是广泛的,从人和宠物的健康监测和运动员的健身监测。由于心脏控制方式的变化是衰老的一个主要风险因素,分发此类软件将有利于健康老龄化议程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepGANnel: Synthesis of fully annotated single molecule patch-clamp data using generative adversarial networks.
- DOI:10.1371/journal.pone.0267452
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Ball STM;Celik N;Sayari E;Abdul Kadir L;O'Brien F;Barrett-Jolley R
- 通讯作者:Barrett-Jolley R
Discriminant Analysis of Principle Component analyses of Physiological Data
生理数据主成分分析的判别分析
- DOI:10.1101/2020.01.09.899898
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Haidar O
- 通讯作者:Haidar O
Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data
Deep-Channel 使用深度神经网络从膜片钳数据中检测单分子事件
- DOI:10.1101/767418
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Celik N
- 通讯作者:Celik N
An Ion Channel Event Detector using a Recurrent Convolutional Neural Network
使用循环卷积神经网络的离子通道事件检测器
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Celik
- 通讯作者:Celik
Detection of Ion Channel Events with Artificial Intelligence (AI) Deep Learning
利用人工智能 (AI) 深度学习检测离子通道事件
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Celik, N
- 通讯作者:Celik, N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Barrett-Jolley其他文献
Aquaporins: regulators of H2O2 transport and homeostasis in skeletal muscle
- DOI:
10.1016/j.freeradbiomed.2022.10.024 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:8.200
- 作者:
Caroline Amy Staunton;Samantha Jones;Anne McArdle;Malcolm Jackson;Richard Barrett-Jolley - 通讯作者:
Richard Barrett-Jolley
A Gadolinium-Sensitive Non-Specific Cation Channel In Canine Articular Chondrocytes
- DOI:
10.1016/j.bpj.2008.12.3541 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Rebecca Lewis;Richard Barrett-Jolley - 通讯作者:
Richard Barrett-Jolley
Aligning with the 3Rs: alternative models for research into muscle development and inherited myopathies
- DOI:
10.1186/s12917-024-04309-z - 发表时间:
2024-10-18 - 期刊:
- 影响因子:2.600
- 作者:
Hashir Mehmood;Paul R. Kasher;Richard Barrett-Jolley;Gemma L. Walmsley - 通讯作者:
Gemma L. Walmsley
Skeletal muscle aquaporin function and role in redox signalling
骨骼肌水通道蛋白在氧化还原信号中的功能与作用
- DOI:
10.1016/j.freeradbiomed.2024.04.139 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:8.200
- 作者:
Caroline Amy Staunton;Maisey P. Peterson;Robert A. Heaton;Malcolm J. Jackson;Richard Barrett-Jolley - 通讯作者:
Richard Barrett-Jolley
Models Of Paraventricular Nucleus (PVN) Sympathetic Neurone Modulation by Glucose and Hypoglycaemia
- DOI:
10.1016/j.bpj.2009.12.756 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Rebecca Lewis;Alexia Fitzmaurice Mills;Richard Barrett-Jolley - 通讯作者:
Richard Barrett-Jolley
Richard Barrett-Jolley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Barrett-Jolley', 18)}}的其他基金
Maestro Pro multiwell microelectrode array for the University of Liverpool electrophysiology suite: Cell physiology meets high throughput.
适用于利物浦大学电生理学套件的 Maestro Pro 多孔微电极阵列:细胞生理学满足高通量要求。
- 批准号:
BB/X019357/1 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Research Grant
Aquaporins: A hole in our understanding of hydrogen peroxide regulation
水通道蛋白:我们对过氧化氢调节理解的一个漏洞
- 批准号:
BB/T002115/1 - 财政年份:2019
- 资助金额:
$ 31.34万 - 项目类别:
Research Grant
Japan Partnering Award: The paraventricular nucleus of the hypothalamus; networks and mathematical models.
日本合作奖:下丘脑室旁核;
- 批准号:
BB/S020772/1 - 财政年份:2019
- 资助金额:
$ 31.34万 - 项目类别:
Research Grant
Artificial Intelligence Tools For Automatic Single Molecule Analysis
用于自动单分子分析的人工智能工具
- 批准号:
BB/R022143/1 - 财政年份:2018
- 资助金额:
$ 31.34万 - 项目类别:
Research Grant
Role of Paraventricular NK1 Receptor Expressing Spinally-Projecting Neurons in Cardiovascular Control
表达脊髓投射神经元的室旁 NK1 受体在心血管控制中的作用
- 批准号:
BB/N003020/1 - 财政年份:2016
- 资助金额:
$ 31.34万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Ultra-sensitive 3D molecular assays using total body PET and deep learning
使用全身 PET 和深度学习进行超灵敏 3D 分子检测
- 批准号:
DP230102070 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Discovery Projects
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
$ 31.34万 - 项目类别:
Continuing Grant
Model Based Deep Learning Framework for Ultra-High Resolution Multi-Contrast MRI
基于模型的超高分辨率多对比 MRI 深度学习框架
- 批准号:
10534737 - 财政年份:2021
- 资助金额:
$ 31.34万 - 项目类别:
Model Based Deep Learning Framework for Ultra-High Resolution Multi-Contrast MRI
基于模型的超高分辨率多对比 MRI 深度学习框架
- 批准号:
10321658 - 财政年份:2021
- 资助金额:
$ 31.34万 - 项目类别:
General-purpose deep learning theory for ultra-low computational complexity and low capacity in the age of edge AI
边缘AI时代超低计算复杂度和低容量的通用深度学习理论
- 批准号:
21H03456 - 财政年份:2021
- 资助金额:
$ 31.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)