The emergence and plasticity of a balance between excitation and inhibition along dendrites

沿树突的兴奋和抑制之间的平衡的出现和可塑性

基本信息

  • 批准号:
    BB/S000526/1
  • 负责人:
  • 金额:
    $ 82.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

A single neuron in the brain can receive signals from thousands of other neurons. Each signal arrives at specialised sites, known as synapses that are distributed across a tree-like structure known as the dendrite. Every neuron must then decide, based on these incoming signals, whether or not to generate an output signal of its own. The integration of input signals by a neuron is therefore crucial for determining how information flows through the brain. Recent evidence has shown than not all synapses are alike however. The strength of a synapse, i.e. its ability to influence the generation of an output signal, can vary according to position on the dendrite. What's more remarkable though is that neurons receive two types of input: excitatory signals that promote output, and inhibitory signals that prevent it. The behaviour of a neuron is therefore precisely regulated by how these two opposing forces interact with one another in space and time. The importance of developing and maintaining a correct balance between excitation and inhibition is underscored by the fact that an incorrect balance may underlie many neurological disorders such as epilepsy, autism and schizophrenia. However, we know very little about precisely how excitatory and inhibitory synapses are distributed across neurons in the mature brain or how the interaction between them influences neuronal output. We know even less about how the spatial relationship of excitatory and inhibitory synapses is established as the neurons in the brain wire up during development nor how they are adjusted the sensory experience the animal is subjected to as they grow. This is particularly important given that many neurological disorders arise as a consequence of abnormal brain development. In this proposal we will engineer neurons in the mouse brain to express fluorescent markers of different colours to label excitatory and inhibitory synapses. This will allow us to visualize, in a single neuron, how both types of synapse are distributed and how this distribution develops during the wiring of the brain. We will also examine how the distribution of excitatory and inhibitory inputs changes in response to chronic changes in experience (in this case visual input) that results in changes in the activity of neurons. These fluorescent markers will also serve as a guide that will allow us to selectively activate identified synapses and ask specific questions - how does stimulation of single excitatory synapse influence the activity of a neuron and how does this change when neighbouring or distant inhibitory synapses are also active? These studies will provide important insight into how neurons and circuits develop and how excitatory and inhibitory signals are integrated in the healthy brain. This, in-turn, will lay the foundations for studying these processes in models of neurological disorders.
大脑中的单个神经元可以接收来自数千个其他神经元的信号。每一个信号到达特定的部位,称为突触,这些突触分布在一个称为树突的树状结构上。然后,每个神经元必须根据这些输入信号决定是否生成自己的输出信号。因此,神经元对输入信号的整合对于确定信息如何流经大脑至关重要。然而,最近的证据表明,并非所有的突触都是一样的。突触的强度,即其影响输出信号的产生的能力,可以根据树突上的位置而变化。更值得注意的是,神经元接受两种类型的输入:促进输出的兴奋性信号和阻止输出的抑制性信号。因此,神经元的行为受到这两种相反力量在空间和时间上如何相互作用的精确调节。发展和保持兴奋和抑制之间的正确平衡的重要性被以下事实所强调:不正确的平衡可能是许多神经系统疾病的基础,如癫痫、自闭症和精神分裂症。然而,我们对兴奋性和抑制性突触在成熟大脑中如何分布在神经元中,或者它们之间的相互作用如何影响神经元输出知之甚少。我们对兴奋性和抑制性突触的空间关系是如何随着大脑中神经元在发育过程中的连接而建立的,也不知道它们是如何随着动物生长而受到的感官体验的调节。这一点尤其重要,因为许多神经系统疾病是由于大脑发育异常而引起的。在这个提议中,我们将设计小鼠大脑中的神经元,使其表达不同颜色的荧光标记,以标记兴奋性和抑制性突触。这将使我们能够在单个神经元中可视化这两种类型的突触是如何分布的,以及这种分布在大脑布线过程中是如何发展的。我们还将研究兴奋性和抑制性输入的分布如何响应于导致神经元活动变化的经验(在这种情况下是视觉输入)的慢性变化而变化。这些荧光标记物也将作为一种指导,使我们能够选择性地激活已识别的突触,并提出具体的问题-刺激单个兴奋性突触如何影响神经元的活动,以及当邻近或远处的抑制性突触也活跃时,这种变化如何?这些研究将为神经元和回路如何发育以及兴奋性和抑制性信号如何整合到健康大脑中提供重要的见解。反过来,这将为在神经系统疾病模型中研究这些过程奠定基础。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-synaptic boutons are a feature of CA1 hippocampal connections in the stratum oriens.
  • DOI:
    10.1016/j.celrep.2023.112397
  • 发表时间:
    2023-05-30
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
  • 通讯作者:
Cholinergic Stimulation Modulates the Functional Composition of CA3 Cell Types in the Hippocampus
胆碱能刺激调节海马 CA3 细胞类型的功能组成
  • DOI:
    10.1523/jneurosci.0966-22.2023
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Puhl C
  • 通讯作者:
    Puhl C
Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia.
  • DOI:
    10.1038/s41586-021-03491-6
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Braga L;Ali H;Secco I;Chiavacci E;Neves G;Goldhill D;Penn R;Jimenez-Guardeño JM;Ortega-Prieto AM;Bussani R;Cannatà A;Rizzari G;Collesi C;Schneider E;Arosio D;Shah AM;Barclay WS;Malim MH;Burrone J;Giacca M
  • 通讯作者:
    Giacca M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Burrone其他文献

Multi-synaptic boutons are a feature of CA1 hippocampal connections in the emstratum oriens/em
多突触突触小体是内嗅皮层/海马 CA1 区连接的一个特征。
  • DOI:
    10.1016/j.celrep.2023.112397
  • 发表时间:
    2023-05-30
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Mark Rigby;Federico W. Grillo;Benjamin Compans;Guilherme Neves;Julia Gallinaro;Sophie Nashashibi;Sally Horton;Pedro M. Pereira Machado;Maria Alejandra Carbajal;Gema Vizcay-Barrena;Florian Levet;Jean-Baptiste Sibarita;Angus Kirkland;Roland A. Fleck;Claudia Clopath;Juan Burrone
  • 通讯作者:
    Juan Burrone
Aberrant axon initial segment plasticity and intrinsic excitability of ALS hiPSC motor neurons
肌萎缩侧索硬化症诱导多能干细胞衍生运动神经元的异常轴突起始段可塑性和内在兴奋性
  • DOI:
    10.1016/j.celrep.2023.113509
  • 发表时间:
    2023-12-26
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Peter Harley;Caoimhe Kerins;Ariana Gatt;Guilherme Neves;Federica Riccio;Carolina Barcellos Machado;Aimee Cheesbrough;Lea R’Bibo;Juan Burrone;Ivo Lieberam
  • 通讯作者:
    Ivo Lieberam

Juan Burrone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Burrone', 18)}}的其他基金

A super-resolution microscopy platform for imaging cells at multiple spatial scales
用于在多个空间尺度上成像细胞的超分辨率显微镜平台
  • 批准号:
    BB/X019845/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
    Research Grant
Spontaneous and evoked vesicle fusion: the emergence of a synapse
自发和诱发的囊泡融合:突触的出现
  • 批准号:
    G0901307/1
  • 财政年份:
    2010
  • 资助金额:
    $ 82.75万
  • 项目类别:
    Research Grant
The formation of a synapse: measuring vesicle cycling in growth cones and developing presynaptic terminals
突触的形成:测量生长锥中的囊泡循环和发育的突触前末梢
  • 批准号:
    G0600197/1
  • 财政年份:
    2006
  • 资助金额:
    $ 82.75万
  • 项目类别:
    Research Grant

相似国自然基金

中性粒细胞在体内条件下重编程为造血干祖细胞的研究
  • 批准号:
    92068101
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
细胞衰老抑制直接重编程及心肌再生修复的分子机理研究
  • 批准号:
    92068107
  • 批准年份:
    2020
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
PTPRR-ERK介导的神经可塑性在抑郁症发生发展中的作用机理研究
  • 批准号:
    81171290
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
三维空间中距离知觉的可塑性
  • 批准号:
    31100739
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
早年心理应激对大鼠抑郁样行为及突触可塑性的影响
  • 批准号:
    81171284
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
盲人脑网络可塑性的磁共振影像研究
  • 批准号:
    30900476
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating subthreshold vestibular stimulation as a strategy for rehabilitation in individuals with bilateral vestibular hypofunction
研究阈下前庭刺激作为双侧前庭功能减退患者的康复策略
  • 批准号:
    10571440
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
Fetal Programming of Human Newborn Energy Homeostasis Brain Networks
人类新生儿能量稳态大脑网络的胎儿编程
  • 批准号:
    10758984
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
NeuroMuscular Electrical Stimulation to facilitate perturbation-based REACtive balance Training for fall-risk reduction post-stroke: The REACTplusNMES Trial
神经肌肉电刺激促进基于扰动的 REACtive 平衡训练,以减少中风后跌倒风险:REACTplusNMES 试验
  • 批准号:
    10731611
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
Feedforward Activation of AgRP Neurons and Hunger
AgRP 神经元的前馈激活和饥饿
  • 批准号:
    10732358
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
ANG1-7 as an intervention for Alzheimer's Disease.
ANG1-7 作为阿尔茨海默病的干预措施。
  • 批准号:
    10592577
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
Characterizing Lower Extremity Neurophysiological Responses to Sensory Augmentation after Stroke
中风后下肢对感觉增强的神经生理反应特征
  • 批准号:
    10829133
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
Function of astrocytes autophagy in brain homeostasis and opioid-induced maladaptive behavior and addiction, in the context of HIV
HIV背景下星形胶质细胞自噬在大脑稳态和阿片类药物诱导的适应不良行为和成瘾中的功能
  • 批准号:
    10619748
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
tDCS During Contralaterally Controlled FES for Upper Extremity Hemiplegia
上肢偏瘫对侧控制 FES 期间的 tDCS
  • 批准号:
    10658117
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
Competing effects of AgRP and POMC neurons on cAMP signaling in downstream neurons in vivo
AgRP 和 POMC 神经元对体内下游神经元 cAMP 信号传导的竞争作用
  • 批准号:
    10572109
  • 财政年份:
    2023
  • 资助金额:
    $ 82.75万
  • 项目类别:
Synaptic and circuit mechanisms of central GLP-1 signaling in energy balance
能量平衡中枢 GLP-1 信号传导的突触和电路机制
  • 批准号:
    10659252
  • 财政年份:
    2022
  • 资助金额:
    $ 82.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了