Cell wall synthetic lipid microdomains: composition and mechanism of formation
细胞壁合成脂质微区:组成和形成机制
基本信息
- 批准号:BB/S00257X/1
- 负责人:
- 金额:$ 45.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The wide use of antibiotics in healthcare and agriculture has caused the appearance of bacterial strains that are resistant against most or even all antibiotics. As a result, bacterial infections have re-emerged as a serious health concern, and an increasing financial burden for the healthcare systems. To counteract this trend, research and development of new antibiotics is a top priority. We now need to identify new classes of antibiotics that are not readily compromised by existing resistance mechanisms, and to direct our long-term efforts towards antibiotics with an intrinsically lower risk of resistance development. Historically, our most successful classes of antibiotics have been natural compounds produced by other organisms to counteract bacteria in their environment. These antibiotic classes were identified based on good antibacterial activity, and usually feature a complex antibacterial mode of action with several cellular systems inhibited at the same time. In recent decades, efforts to develop new antibiotics have been dominated by a target-driven approach, which first identifies a single, theoretically good antibiotic target, and then screens for specific inhibitors against it. This approach has largely failed due to the rapid rate of resistance development against single mode-of-action antibiotics. Consequently, we now need to re-focus on antibiotics that do not act by a single inhibitory mechanism. Compounds that target bacterial cell membranes are widely used in nature as antimicrobials. These molecules are produced by other bacteria, fungi, plants and animals to combat undesired bacteria. This evolutionally highly successful strategy has two crucial advantages over our current antibiotics. Firstly, instead of inhibiting gene-encoded targets such as proteins or ribosomes, the cellular targets are membrane lipids. Consequently, mutations that modify the target and thereby prevent the binding do not easily emerge. Secondly, the disruption of the cell membrane simultaneously inhibits a large number of membrane-associated cellular processes, thus making it difficult for bacteria to evolve a meaningful defense. One crucial cellular process disrupted by membrane-targeting antibiotics is the synthesis of cell wall, a rigid structure that encloses the cell and provides it with physical stability. The interference with the cell wall synthesis provides membrane-targeting antibiotics the ability to cause irreversible disintegration of the cell, a process termed bacteriolysis. Consequently, membrane-targeting antimicrobials kill bacteria very rapidly, and the rate of resistance development is either remarkably low or even undetectable. The reason why the bacterial cell wall synthesis machinery is sensitive to membrane-targeting antibiotics has remained elusive. Recently, we showed that proteins responsible for the cell wall synthesis induce a specific area in their membrane surrounding (lipid domain) that differs from the remaining membrane in its properties and composition. Such lipid domains are preferred targets for membrane-targeting antibiotics, hence providing the first plausible explanation why cell wall synthesis is efficiently inhibited. In this project, we will identify the mechanism through which the lipid domains associated with the cell wall synthesis machinery are induced, and characterise their detailed composition. This is important in order to understand how bacteria synthesise their protecting cell wall envelope, and how membrane-targeting antimicrobials kill bacteria by disrupting its synthesis. By providing direct insight into the mechanisms underpinning their potency, our research will guide the design and development of novel membrane-targeting antibiotics that exploit this cellular weak point.
抗生素在医疗保健和农业中的广泛使用导致了对大多数甚至所有抗生素具有耐药性的细菌菌株的出现。因此,细菌感染已重新成为严重的健康问题,并增加了医疗保健系统的财政负担。为了应对这一趋势,研究和开发新的抗生素是当务之急。我们现在需要确定不容易受到现有耐药性机制影响的新抗生素类别,并将我们的长期努力导向具有内在较低耐药性发展风险的抗生素。从历史上看,我们最成功的抗生素类别是由其他生物体产生的天然化合物,以抵消其环境中的细菌。这些抗生素类别是基于良好的抗菌活性来鉴定的,并且通常具有复杂的抗菌作用模式,同时抑制几个细胞系统。近几十年来,开发新抗生素的努力一直由靶点驱动的方法主导,该方法首先确定一个单一的、理论上良好的抗生素靶点,然后筛选针对该靶点的特异性抑制剂。由于对单一作用模式抗生素的耐药性发展速度很快,这种方法在很大程度上失败了。因此,我们现在需要重新关注那些不通过单一抑制机制起作用的抗生素。靶向细菌细胞膜的化合物在自然界中广泛用作抗微生物剂。这些分子由其他细菌、真菌、植物和动物产生,以对抗不需要的细菌。这种进化上非常成功的策略与我们目前的抗生素相比有两个关键优势。首先,细胞靶点是膜脂质,而不是抑制基因编码的靶点,如蛋白质或核糖体。因此,不容易出现修饰靶标从而阻止结合的突变。其次,细胞膜的破坏同时抑制了大量与膜相关的细胞过程,从而使细菌难以进化出有意义的防御。被膜靶向抗生素破坏的一个关键细胞过程是细胞壁的合成,细胞壁是一种封闭细胞并为其提供物理稳定性的刚性结构。对细胞壁合成的干扰为膜靶向抗生素提供了导致细胞不可逆崩解的能力,这一过程称为细菌溶解。因此,膜靶向抗菌剂非常迅速地杀死细菌,并且耐药性发展的速率非常低,甚至无法检测到。细菌细胞壁合成机制对膜靶向抗生素敏感的原因仍然难以捉摸。最近,我们发现负责细胞壁合成的蛋白质在其膜周围(脂质结构域)诱导一个特定区域,该区域在其性质和组成上不同于其余膜。这种脂质结构域是膜靶向抗生素的优选靶点,因此提供了为什么细胞壁合成被有效抑制的第一个合理解释。在这个项目中,我们将确定与细胞壁合成机制相关的脂质结构域被诱导的机制,并描述其详细组成。这对于了解细菌如何合成其保护细胞壁包膜以及膜靶向抗菌剂如何通过破坏其合成来杀死细菌非常重要。通过提供对其效力基础机制的直接洞察,我们的研究将指导利用这一细胞弱点的新型膜靶向抗生素的设计和开发。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria.
- DOI:10.15252/embj.2021109800
- 发表时间:2022-03-01
- 期刊:
- 影响因子:0
- 作者:Gohrbandt M;Lipski A;Grimshaw JW;Buttress JA;Baig Z;Herkenhoff B;Walter S;Kurre R;Deckers-Hebestreit G;Strahl H
- 通讯作者:Strahl H
Regulation of DNA replication initiation by ParA is independent of parS location in Bacillus subtilis.
- DOI:10.1099/mic.0.001259
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Koh A;Strahl H;Murray H
- 通讯作者:Murray H
Molecular motor tug-of-war regulates elongasome cell wall synthesis dynamics in Bacillus subtilis
分子运动拔河比赛调节枯草芽孢杆菌细胞壁合成动力学
- DOI:10.1101/2023.05.10.540107
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Middlemiss S
- 通讯作者:Middlemiss S
Regulation of para-cresol production in Clostridioides difficile
艰难梭菌中对甲酚生产的调节
- DOI:10.1016/j.mib.2021.11.005
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Harrison M
- 通讯作者:Harrison M
A widespread toxin-antitoxin system exploiting growth control via alarmone signalling
一种广泛的毒素-抗毒素系统,通过警报信号传导利用生长控制
- DOI:10.1101/575399
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jimmy S
- 通讯作者:Jimmy S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henrik Strahl Von Schulten其他文献
Henrik Strahl Von Schulten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henrik Strahl Von Schulten', 18)}}的其他基金
EVALUATING ELONGASOME TUG-OF-WAR AS A KEY REGULATOR OF BACTERIAL CELL WALL SYNTHESIS
评估延长体拔河作用作为细菌细胞壁合成的关键调节因子
- 批准号:
BB/X001512/1 - 财政年份:2023
- 资助金额:
$ 45.64万 - 项目类别:
Research Grant
相似国自然基金
Wall crossing现象和内禀Higgs态
- 批准号:11305125
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Baeyer-Villiger单加氧酶构效关系和分子进化的研究
- 批准号:31070718
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
关于任意截面导体壁中的环状形非圆截面等离子体稳定性的研究
- 批准号:10375050
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Profiling Transcriptional Heterogeneity in Microbial Cells at Single Cell resolution and High-throughput using Droplet Microfluidics
使用液滴微流控以单细胞分辨率和高通量分析微生物细胞的转录异质性
- 批准号:
10002886 - 财政年份:2020
- 资助金额:
$ 45.64万 - 项目类别:
Spatial organization of mycobacterial cell wall biosynthesis
分枝杆菌细胞壁生物合成的空间组织
- 批准号:
9884733 - 财政年份:2019
- 资助金额:
$ 45.64万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10381814 - 财政年份:2017
- 资助金额:
$ 45.64万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
9382168 - 财政年份:2017
- 资助金额:
$ 45.64万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10552391 - 财政年份:2017
- 资助金额:
$ 45.64万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10242123 - 财政年份:2017
- 资助金额:
$ 45.64万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10112721 - 财政年份:2017
- 资助金额:
$ 45.64万 - 项目类别:
Synthetic study on the mycobacterial cell wall glycoconjugate
分枝杆菌细胞壁糖复合物的合成研究
- 批准号:
26350966 - 财政年份:2014
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dissecting bacterial cell wall synthesis using in vivo single molecule tracking
使用体内单分子追踪剖析细菌细胞壁的合成
- 批准号:
8754253 - 财政年份:2014
- 资助金额:
$ 45.64万 - 项目类别:
Visualization of plant cell wall lignification via metabolic labelling using novel synthetic monolignol mimics.
使用新型合成木质醇模拟物通过代谢标记可视化植物细胞壁木质化。
- 批准号:
26892014 - 财政年份:2014
- 资助金额:
$ 45.64万 - 项目类别:
Grant-in-Aid for Research Activity Start-up