Spatiotemporal neuronal system dynamics underlying hierarchical visual representations of objects and faces for primate perception and discrimination

时空神经元系统动力学是灵长类动物感知和辨别的物体和面部分层视觉表征的基础

基本信息

  • 批准号:
    BB/T00598X/1
  • 负责人:
  • 金额:
    $ 205.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The human and (non-human primate) brain is one of the most complex biological systems. A major challenge in neuroscience is to understand how the brain operates as a dynamic complex system and what neuronal mechanisms underlie normal perception and cognition. Visual representations of objects and faces are simultaneously encoded across multiple reciprocally connected regions with highly parallelized and hierarchically organized processing stages. Our objective is to advance scientific understanding of systems level neuronal interactions by discovering the spatio-temporal processes operating within and between higher visual areas in the temporal lobe and choice-related prefrontal regions, that together underlie object/face perception and discrimination. We can only learn how brain areas causally interact at the neuronal level by combining multi-electrode, multi-area recordings with interventions. To do this we must record the fundamental functional units in the brain, neurons, (not neuroimaging 'voxels' containing hundreds of thousands of neurons) and we must use animal models because such recording is invasive. Recent technological advances facilitate multi-area multi-electrode recordings and investigation of neuronal dynamics both within and between many areas and cortical layers. Moreover, we can only learn how brain areas causally interact at the neuronal level by combining neuronal recordings with interventions. Ever since Hebb's principles of synaptic plasticity, spatiotemporal dynamics of interconnected neuronal activities have been implicated as key principle underlying learning. Spatiotemporal firing patterns exist in many areas across different behavioral tasks. In the case of vision, the binding of distributed visual representations may exploit such principles but the extraction of complex neuronal firing ('spike') sequences, at multiple temporal scales and time-lags, is computationally complex. Now, new eEfficient algorithms have been developed for identifying larger assemblies of neurons with consistent spike delays at varying temporal scales without making assumptions of the underling encoding method. We will apply new computational and statistical tools to identify cell assemblies and extract consistent multi-neuron spiking sequences within and across areas. Our empirical recordings will be complemented by running GPU optimised simulations of spiking neural networks models to assess our findings and generate novel predictions. Recording from more neurons simultaneously raises the 'curse of dimensionality' and Network science, offers advanced analytical and scalable tools for systems neuroscience, complementing dimension-reduction approaches, and allowing for quantitative analyses of network structure and probabilistic descriptions of population-wide activity. These approaches allow us to better understand computations, quantify and track dynamics of key concepts such as 'cell assemblies', and track changes elicited by behaviour or brain interventions.Our objective is divided into 3 sub-goals: The first two are to understand the dynamic spatiotemporal representations and mechanisms of neuronal interaction operating within and between multiple higher visual areas, and cortical layers, that underlie normal perception of objects and faces respectively. In the case of faces we will study such dynamics and interactions across different temporal and frontal lobe face patches. Our third sub-goal is to understand how these mechanisms and interactions differ in the context of memory, categorization, and choice behaviour with respect to objects and faces with a special emphasis on frontal lobe - temporal lobe interactions.
人类和(非人类灵长类动物)的大脑是最复杂的生物系统之一。神经科学的一个主要挑战是了解大脑作为一个动态复杂系统如何运作,以及正常感知和认知的神经机制是什么。对象和面部的视觉表示在多个高度并行化和分层组织的处理阶段中同时编码。我们的目标是通过发现颞叶和选择相关的前额叶区域中的高级视觉区域内和之间的时空过程来推进对系统水平神经元相互作用的科学理解,这些过程共同构成物体/面孔感知和辨别的基础。我们只能通过将多电极、多区域记录与干预相结合,来了解大脑区域如何在神经元水平上因果地相互作用。要做到这一点,我们必须记录大脑中的基本功能单位,神经元(而不是包含数十万神经元的神经成像“体素”),我们必须使用动物模型,因为这种记录是侵入性的。最近的技术进步促进了多区域多电极记录和许多区域和皮质层内和之间的神经元动力学的研究。此外,我们只能通过将神经元记录与干预相结合来了解大脑区域如何在神经元水平上因果地相互作用。自从Hebb的突触可塑性原理以来,相互关联的神经元活动的时空动力学已经被认为是学习的关键原理。时空放电模式存在于不同行为任务的许多区域。在视觉的情况下,分布式视觉表示的绑定可以利用这样的原理,但是在多个时间尺度和时间滞后下提取复杂的神经元放电(“尖峰”)序列在计算上是复杂的。现在,已经开发了新的eEfficient算法,用于识别在不同时间尺度上具有一致尖峰延迟的较大神经元集合,而无需假设底层编码方法。我们将应用新的计算和统计工具来识别细胞组装,并在区域内和区域间提取一致的多神经元尖峰序列。我们的经验记录将通过运行尖峰神经网络模型的GPU优化模拟来补充,以评估我们的发现并生成新的预测。记录更多的神经元同时提高了“维数灾难”和网络科学,为系统神经科学提供了先进的分析和可扩展的工具,补充了降维方法,并允许对网络结构进行定量分析和对人群活动的概率描述。这些方法使我们能够更好地理解计算,量化和跟踪关键概念的动态,如“细胞骨架”,并跟踪行为或大脑干预引起的变化。我们的目标分为3个子目标:前两个是理解神经元相互作用的动态时空表征和机制,在多个高级视觉区域和皮质层内和之间操作,分别是物体和面孔的正常感知的基础。在面孔的情况下,我们将研究这种动态和跨不同的颞叶和额叶面孔补丁的相互作用。我们的第三个子目标是了解这些机制和相互作用如何在记忆,分类和选择行为的背景下与对象和面孔不同,特别强调额叶-颞叶相互作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A one-shot learning signal in monkey prefrontal cortex
猴子前额皮质的一次性学习信号
  • DOI:
    10.1101/2020.11.27.401422
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Achterberg J
  • 通讯作者:
    Achterberg J
Mapping causal links between prefrontal cortical regions and intra-individual behavioral variability.
  • DOI:
    10.1038/s41467-023-44341-5
  • 发表时间:
    2024-01-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Mansouri, Farshad Alizadeh;Buckley, Mark J.;Tanaka, Keiji
  • 通讯作者:
    Tanaka, Keiji
Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models.
  • DOI:
    10.1371/journal.pone.0254057
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Humphries MD;Caballero JA;Evans M;Maggi S;Singh A
  • 通讯作者:
    Singh A
What Does the Frontopolar Cortex Contribute to Goal-Directed Cognition and Action?
  • DOI:
    10.1523/jneurosci.1143-22.2022
  • 发表时间:
    2022-11-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Hogeveen,Jeremy;Medalla,Maria;Costa,Vincent D.
  • 通讯作者:
    Costa,Vincent D.
Strong and weak principles of neural dimension reduction
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Buckley其他文献

The measurement of mass and weight.
质量和重量的测量。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Davidson;M. Perkin;Mark Buckley
  • 通讯作者:
    Mark Buckley
PatentExplorer: Refining Patent Search with Domain-specific Topic Models
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Buckley
  • 通讯作者:
    Mark Buckley
News Article Teaser Tweets and How to Generate Them
新闻文章预告推文以及如何生成它们
Work Experience
工作经验
Game Theory Tools for Improving Ecological Restoration Outcomes
改善生态恢复成果的博弈论工具
  • DOI:
    10.5822/978-1-61091-039-2_17
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Buckley;K. Holl
  • 通讯作者:
    K. Holl

Mark Buckley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Buckley', 18)}}的其他基金

Systems Neuroscience of Primate Social Cognition
灵长类社会认知的系统神经科学
  • 批准号:
    MR/W019892/1
  • 财政年份:
    2022
  • 资助金额:
    $ 205.13万
  • 项目类别:
    Research Grant
The Influence of Macromolecule Accumulation on Cartilage Mechanics and Chondrocyte Health
大分子积累对软骨力学和软骨细胞健康的影响
  • 批准号:
    2217494
  • 财政年份:
    2022
  • 资助金额:
    $ 205.13万
  • 项目类别:
    Standard Grant
Cortical networks underlying primate choice behaviour
灵长类动物选择行为背后的皮质网络
  • 批准号:
    MR/K005480/1
  • 财政年份:
    2013
  • 资助金额:
    $ 205.13万
  • 项目类别:
    Research Grant

相似国自然基金

脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
  • 批准号:
    82371478
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
mt DNA/AIM2 inflammasome/ neuronal pyroptosis途径参与创伤性颅脑损伤后认知功能障碍发生的作用机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Tousled like kinase介导青光眼中视网膜神经节细胞死亡的作用和机制
  • 批准号:
    32000518
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
去乙酰化酶SIRT1在前体mRNA可变剪切中的作用及其生理病理效应研究
  • 批准号:
    31970691
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
脑梗塞运动性失语后语言功能恢复机制的fMRI功能连接研究
  • 批准号:
    30700193
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
  • 批准号:
    10562265
  • 财政年份:
    2023
  • 资助金额:
    $ 205.13万
  • 项目类别:
Spatiotemporal analysis of TDP-43 toxicity and endolysosomal turnover mechanisms
TDP-43毒性和内溶酶体周转机制的时空分析
  • 批准号:
    10626673
  • 财政年份:
    2022
  • 资助金额:
    $ 205.13万
  • 项目类别:
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
  • 批准号:
    10703714
  • 财政年份:
    2021
  • 资助金额:
    $ 205.13万
  • 项目类别:
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
  • 批准号:
    10188106
  • 财政年份:
    2021
  • 资助金额:
    $ 205.13万
  • 项目类别:
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
  • 批准号:
    10378061
  • 财政年份:
    2021
  • 资助金额:
    $ 205.13万
  • 项目类别:
Spatiotemporal Molecular Substrates of TBI at Single Cell Resolution
单细胞分辨率下 TBI 的时空分子底物
  • 批准号:
    10386933
  • 财政年份:
    2020
  • 资助金额:
    $ 205.13万
  • 项目类别:
Spatiotemporal Molecular Substrates of TBI at Single Cell Resolution
单细胞分辨率下 TBI 的时空分子底物
  • 批准号:
    10200171
  • 财政年份:
    2020
  • 资助金额:
    $ 205.13万
  • 项目类别:
Spatiotemporal Molecular Substrates of TBI at Single Cell Resolution
单细胞分辨率 TBI 的时空分子底物
  • 批准号:
    10606498
  • 财政年份:
    2020
  • 资助金额:
    $ 205.13万
  • 项目类别:
A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects
一种可穿戴的功能性大脑成像系统,具有全头部覆盖和增强的时空分辨率,用于研究人类受试者的复杂神经回路
  • 批准号:
    10697355
  • 财政年份:
    2019
  • 资助金额:
    $ 205.13万
  • 项目类别:
Genetic Profiles of the Spatiotemporal Causality of Tau and Amyloid in the Elderly Brain
老年大脑中 Tau 蛋白和淀粉样蛋白的时空因果关系的遗传图谱
  • 批准号:
    10390455
  • 财政年份:
    2019
  • 资助金额:
    $ 205.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了