A Decision Support tool for Potato Blackleg Disease (DeS-BL)
马铃薯黑胫病决策支持工具 (DeS-BL)
基本信息
- 批准号:BB/T010657/1
- 负责人:
- 金额:$ 116.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Blackleg disease of potato caused by P. atrosepticum (Pba) is the most damaging bacterial plant pathogen in the UK, costing £50M p.a. in losses for the potato industry. Current knowledge assumes that disease is caused through Pba-infected seed tubers. However, our recent unpublished data have shown that under high soil moisture following irrigation, disease appears in plants grown from pathogen free seed (minitubers). The most likely explanation is that bacteria enter the plant and cause disease directly from the soil; something not previously considered. We have also shown that Pba is able to colonise roots of other plant species (including crops), possibly as natural rhizosphere-dwelling saprophytes in the soil. In pot trials with Pba alone, we showed there was no movement of Pba from soil into the plant. However, when free-living nematodes (FLN) were added to soil, a 100-fold increase in Pba in stems occurred.Through these and other findings we now have the potential to make a step change in how we manage blackleg. We will address knowledge gaps firstly by using Light Sheet and Confocal Laser Scanning microscopy, transparent soils and mesocosm studies to assess the role of FLN as vectors of Pba and how infection occurs. We will also examine how changes in standard irrigation regimes can help to reduce levels of blackleg in ware crops (where irrigation is often over-applied to avoid common scab disease that occurs in dry conditions), and how it might change FLN communities around potato root systems. Similarly, we will identify cover crops that limit natural Pba colonisation on their roots as a possible way to reduce Pba numbers in soil prior to planting potato. Little is known about the microbiome on potato roots and how these might be influenced to favour or reduce colonisation by Pba. We will therefore characterise the potato microbiome prior to and following irrigation using shotgun metagenomics sequencing and the latest bioinformatics tools, with a focus on the Pectobacteriaceae and wider Gamma-proteobacteria. We will also use GC-MS to examine how changes in root architecture and the constituents of root exudates influence the composition of these bacterial groups, to assess whether the use irrigation and cover crops alter the balance between beneficial and harmful bacteria associated with potato. Finally, we will determine whether novel antimicrobials (bacteriocins) in closely related non-pathogenic bacteria in the microbiome could act as a management option against Pba.Our recent modelling research using the Scottish Government's in-house potato inspections database (SPUDS), shows that blackleg incidence on a national scale does not occur randomly but in clusters. Reason(s) for this remain unclear but could be due to several things that, when identified, may assist growers in managing their crops, e.g. potato crop distribution, weather, soil type, soil moisture, leaf wetness, FLN distribution, crop type and rotation prior to planting. Using data generated from this project, an extensive array of data from other recent and historical investigations and the latest data from government and industry we will model, using innovative machine learning methods, at national scale these data to identify trends and drivers of Pba incidence in both space and time and, through this, produce predictive models to support development of a set of decision support tools for evaluation by stakeholders during the project and early adoption thereafter. Further, through scenario testing, we will quantify the predicted effects of climate change on future blackleg incidence in association with FLN presence thus providing the industry with robust and novel data to underpin sector resilience planning.
马铃薯黑腿病是由败脓杆菌(Pba)引起的,是英国最具破坏性的细菌植物病原体,马铃薯产业每年损失5000万英镑。目前的知识假设疾病是通过pba感染的种块茎引起的。然而,我们最近未发表的数据表明,在灌溉后的高土壤湿度下,从无病原体种子(小苗)生长的植物出现疾病。最可能的解释是细菌进入植物并直接从土壤中引起疾病;未被考虑的事物我们还表明,Pba能够在其他植物物种(包括作物)的根中定植,可能是土壤中天然的根际腐生植物。在单独使用Pba的盆栽试验中,我们发现Pba没有从土壤进入植物。然而,当土壤中添加自由生活线虫(FLN)时,茎中的Pba增加了100倍。通过这些和其他的发现,我们现在有可能在如何管理黑腿方面迈出一步。我们将首先通过光片和共聚焦激光扫描显微镜、透明土壤和中观研究来解决知识空白,以评估FLN作为Pba载体的作用以及感染是如何发生的。我们还将研究标准灌溉制度的变化如何有助于减少马铃薯作物的黑腿病水平(在干旱条件下,灌溉经常被过度施用,以避免常见的结痂病),以及它如何改变马铃薯根系周围的FLN群落。同样,我们将确定覆盖作物,限制其根部的天然Pba定植,作为在种植马铃薯之前减少土壤中Pba数量的可能方法。人们对马铃薯根部的微生物群知之甚少,也不知道这些微生物群如何影响Pba的定植。因此,我们将使用霰弹枪宏基因组测序和最新的生物信息学工具来表征灌溉前后的马铃薯微生物组,重点是Pectobacteriaceae和更广泛的Gamma-proteobacteria。我们还将使用GC-MS来研究根系结构和根系分泌物成分的变化如何影响这些细菌群的组成,以评估使用灌溉和覆盖作物是否会改变与马铃薯相关的有益和有害细菌之间的平衡。最后,我们将确定微生物组中密切相关的非致病性细菌中的新型抗菌剂(细菌素)是否可以作为对抗Pba的管理选择。我们最近使用苏格兰政府内部马铃薯检查数据库(SPUDS)进行的建模研究表明,黑腿病在全国范围内的发病率不是随机发生的,而是成群发生的。造成这种情况的原因尚不清楚,但可能是由于一些因素,这些因素一旦确定,可能有助于种植者管理他们的作物,例如马铃薯作物分布、天气、土壤类型、土壤湿度、叶片湿度、FLN分布、作物类型和种植前的轮作。利用该项目产生的数据、来自其他近期和历史调查的大量数据以及来自政府和行业的最新数据,我们将使用创新的机器学习方法,在全国范围内对这些数据进行建模,以确定Pba发病率在空间和时间上的趋势和驱动因素,并通过此,生成预测模型,以支持一组决策支持工具的开发,以便在项目期间和之后的早期采用中由涉众进行评估。此外,通过情景测试,我们将量化气候变化对与FLN存在相关的未来黑腿发病率的预测影响,从而为行业提供可靠和新颖的数据,以支持行业弹性规划。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In situ laser manipulation of root tissues in transparent soil.
- DOI:10.1007/s11104-021-05133-2
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Ge S;Dupuy LX;MacDonald MP
- 通讯作者:MacDonald MP
In situ control of root-bacteria interactions using optical trapping in transparent soil.
使用透明土壤中的光捕获原位控制根-细菌相互作用。
- DOI:10.1093/jxb/erac437
- 发表时间:2023
- 期刊:
- 影响因子:6.9
- 作者:Ge S
- 通讯作者:Ge S
Comparing the efficiency of six common methods for DNA extraction from root-lesion nematodes (Pratylenchus spp.)
比较从根部病变线虫(短体线虫属)中提取 DNA 的六种常用方法的效率
- DOI:10.1163/15685411-bja10049
- 发表时间:2020
- 期刊:
- 影响因子:1.2
- 作者:Orlando V
- 通讯作者:Orlando V
Landscape Epidemiology of Potato Blackleg
马铃薯黑胫病景观流行病学
- DOI:10.1094/phyto-12-22-0483-r
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Skelsey P
- 通讯作者:Skelsey P
Microbe Profile: Pectobacterium atrosepticum: an enemy at the door.
微生物简介:黑脓杆菌:门口的敌人。
- DOI:10.1099/mic.0.001221
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Toth IK
- 通讯作者:Toth IK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Toth其他文献
Balancing the scales: assessing the impact of irrigation and pathogen burden on potato blackleg disease and soil microbial communities
- DOI:
10.1186/s40168-024-01918-6 - 发表时间:
2024-10-21 - 期刊:
- 影响因子:12.700
- 作者:
Ciara Keating;Elizabeth Kilbride;Mark A. Stalham;Charlotte Nellist;Joel Milner;Sonia Humphris;Ian Toth;Barbara K. Mable;Umer Zeeshan Ijaz - 通讯作者:
Umer Zeeshan Ijaz
Report on CIP-EAPR Workshop 2017 on Biocontrol and Biostimulants Agents for the Potato Crop, Held During the 20th EAPR Triennial Conference, Versailles, France, on Tuesday July 11, 2017
- DOI:
10.1007/s11540-018-9385-0 - 发表时间:
2018-07-03 - 期刊:
- 影响因子:2.100
- 作者:
André Devaux;Jean-Pierre Goffart;Peter Kromann;Ian Toth;Claude Bragard;Stefan Declerck - 通讯作者:
Stefan Declerck
Epidemiology of Dickeya dianthicola and Dickeya solani in ornamental hosts and potato studied using variable number tandem repeat analysis
- DOI:
10.1007/s10658-014-0523-5 - 发表时间:
2014-09-04 - 期刊:
- 影响因子:1.900
- 作者:
Neil Parkinson;Leighton Pritchard;Ruth Bryant;Ian Toth;John Elphinstone - 通讯作者:
John Elphinstone
Ian Toth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
- 批准号:21002080
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
- 批准号:70501008
- 批准年份:2005
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Using Patients' Stated Preferences to Inform and Support Proxy Decision-making during Palliative Treatment: Instrument Development and Evaluation
在姑息治疗期间利用患者陈述的偏好来告知和支持代理决策:仪器开发和评估
- 批准号:
10819002 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Preparing for Blood-Based Alzheimer’s Disease Biomarker Testing in Diverse Populations: Development of a Decision-Support Tool for Primary Care
为不同人群进行基于血液的阿尔茨海默病生物标志物测试做好准备:开发初级保健决策支持工具
- 批准号:
10722716 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Addressing Gaps in Language Access Services through a Patient-Centered Decision-Support Tool
通过以患者为中心的决策支持工具解决语言获取服务中的差距
- 批准号:
10699030 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Refining and Pilot Testing a Decision Support Intervention to Facilitate Adoption of Evidence-Based Programs to Improve Parent and Child Mental Health
完善和试点测试决策支持干预措施,以促进采用循证计划来改善父母和儿童的心理健康
- 批准号:
10869705 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
- 批准号:
10589512 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
The AMPREDICT PROsthetics Decision Support Tool: using evidence to guide personalized prosthetic prescription and rehabilitation planning
AMPREDICT 假肢决策支持工具:利用证据指导个性化假肢处方和康复规划
- 批准号:
10750706 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
- 批准号:
10735348 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别:
Improving contraceptive decision support for individuals with chronic conditions
改善慢性病患者的避孕决策支持
- 批准号:
10733672 - 财政年份:2023
- 资助金额:
$ 116.55万 - 项目类别: