Maximizing survival when hungry: neural mechanisms for computing behavioural priorities
饥饿时最大化生存:计算行为优先级的神经机制
基本信息
- 批准号:BB/V000233/1
- 负责人:
- 金额:$ 56.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hunger is a potent internal drive that can significantly change an animal's behavioural priorities. For example, hungry animals favour actions that increase the chance of finding food, but this comes with an elevated risk of predation. Moreover, the expression of non-essential behaviours (e.g. reproduction) is down-regulated as an energy-conserving strategy. Remarkably, hunger can also substantially change the way an animal responds to environmental cues; when well-fed, an ambiguous stimulus might be perceived as a threat but with increased hunger this may be ignored or even considered as a possible food cue. How does an animal integrate all this information and reach a consensus decision about which action - from its full behavioural repertoire - to select, and thus maximize its survival?These computations must be solved by key interactions between the brain circuits that control each distinct behaviour. However, to understand these interactions is challenging; it requires an extensive knowledge of each circuit and a means to monitor all of them across the brain at the same time. In the mammalian nervous system, this is not possible but simpler animals must solve the exact same problems using less complex nervous systems that are highly-accessible for interrogation.Here, we will use a remarkably well-understood invertebrate system, Lymnaea, whose six principal behaviours (feeding, locomotion, reproduction, withdrawal, respiration, heart control) have been extensively characterized down to the level of the individual identified neurons that control them. As such, this provides the opportunity to monitor the key survival-linked decision-making events 'online' as the system processes information about both its internal hunger state and cues arising from the environment.To achieve this, we will exploit the latest advances in behaviour and brain recording approaches. Specifically, behaviours will be monitored using new machine-learning algorithms that can track animal body-parts, postures and units of behaviour (eg. feeding events) automatically. We will assay brain activity using a novel fluorescence imaging microscope developed in-lab to monitor neurons across the nervous system down to single cell level. We will also exploit commercial solutions that allow 100s-1000s of neurons to be recorded simultaneously over long-time periods.We will first establish how this animal encodes information about its hunger-state across all the behaviour-generating neural circuits in the brain and then determine how these circuits interact to decide which action to select. Subsequently, we will examine how neural circuits are re-tuned such that the same input can drive completely different behaviours when hungry versus when fed; this remarkable shift in the perceived meaning of an input is a highly-adaptive mechanism for adjusting risk to suit an animal's current situation, but the neural basis for it is poorly understood. Using real-world natural predator cues, we will also test how animals compute a decision when faced with two conflicting threats: predation versus starvation. This will provide insight into the fundamental neural mechanisms controlling an animal's most immediate survival-linked decisions.This topic has increasing significance as animals start to face major alterations to their habitat and food availability due to climate change and urbanization. This proposal aligns directly with the BBSRC responsive mode priorities '3Rs' by using a non-'protected' invertebrate species, 'Food, Nutrition and Health' through identifying integral cellular and network mechanisms involved in metabolic regulation and 'Data driven Biology' through our deep-learning behaviour-tracking approaches and novel whole-CNS neuronal activity readout strategies. The outputs from this work, which aim to provide a fundamental understanding of survival-linked decision-making, also have relevance to 'Systems Approaches to the Biosciences'.
饥饿是一种强大的内在驱动力,可以显著改变动物的行为优先级。例如,饥饿的动物喜欢增加找到食物的机会的行为,但这会增加被捕食的风险。此外,作为一种节能策略,非必要行为(如生殖)的表达被下调。值得注意的是,饥饿也可以大大改变动物对环境线索的反应方式;当食物充足时,模糊的刺激可能会被视为威胁,但随着饥饿感的增加,这可能会被忽视,甚至被认为是可能的食物线索。动物如何整合所有这些信息,并就选择哪种行为(从其完整的行为库中)达成一致决定,从而最大限度地提高其生存率?这些计算必须通过控制每个不同行为的大脑回路之间的关键交互来解决。然而,要理解这些相互作用是具有挑战性的;它需要对每个回路的广泛了解,以及同时监控大脑中所有回路的方法。在哺乳动物的神经系统中,这是不可能的,但简单的动物必须使用不太复杂的神经系统来解决完全相同的问题,这些神经系统非常容易被询问。(进食、运动、生殖、退缩、呼吸,心脏控制)已经被广泛地表征到控制它们的单个识别的神经元的水平。因此,这提供了一个机会,以监测关键的生存相关的决策事件'在线'作为系统处理的信息,其内部的饥饿状态和线索所产生的环境。为了实现这一目标,我们将利用最新的进展行为和大脑记录的方法。具体来说,将使用新的机器学习算法来监测行为,该算法可以跟踪动物的身体部位、姿势和行为单位(例如,喂食事件)。我们将使用实验室开发的新型荧光成像显微镜检测大脑活动,以监测神经系统中的神经元,直至单细胞水平。我们还将开发商业解决方案,允许长时间同时记录100 - 1000个神经元。我们将首先确定这种动物如何在大脑中所有产生行为的神经回路中编码有关其饥饿状态的信息,然后确定这些回路如何相互作用以决定选择哪个动作。随后,我们将研究神经回路是如何重新调整的,使得相同的输入可以在饥饿与进食时驱动完全不同的行为;这种输入的感知意义的显着转变是一种高度适应性的机制,用于调整风险以适应动物的当前情况,但其神经基础知之甚少。使用现实世界中的自然捕食者线索,我们还将测试动物如何计算一个决定时,面对两个相互冲突的威胁:捕食与饥饿。这将提供对控制动物最直接的生存相关决策的基本神经机制的深入了解。由于气候变化和城市化,动物开始面临栖息地和食物供应的重大变化,这一主题越来越重要。该提案通过使用非“受保护”的无脊椎动物物种直接与BBSRC响应模式优先级“3R”保持一致,通过识别参与代谢调节的整体细胞和网络机制来确定“食物,营养和健康”,以及通过我们的深度学习行为跟踪方法和新型全CNS神经元活动读出策略来确定“数据驱动生物学”。这项工作的产出,其目的是提供生存相关的决策的基本理解,也有相关的“系统方法的生物科学”。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-telecentric two-photon microscopy for 3D random access mesoscale imaging.
- DOI:10.1038/s41467-022-28192-0
- 发表时间:2022-01-27
- 期刊:
- 影响因子:16.6
- 作者:Janiak FK;Bartel P;Bale MR;Yoshimatsu T;Komulainen E;Zhou M;Staras K;Prieto-Godino LL;Euler T;Maravall M;Baden T
- 通讯作者:Baden T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Staras其他文献
Kevin Staras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Staras', 18)}}的其他基金
Presynaptic substrates in hypothalamus as pivotal regulators of feeding behaviour
下丘脑突触前底物作为进食行为的关键调节因子
- 批准号:
BB/S00310X/1 - 财政年份:2019
- 资助金额:
$ 56.57万 - 项目类别:
Research Grant
Ultrastructure-function properties of recycling vesicle pools in native central synapses
天然中央突触中回收囊泡池的超微结构-功能特性
- 批准号:
BB/K019015/1 - 财政年份:2014
- 资助金额:
$ 56.57万 - 项目类别:
Research Grant
Extrasynaptic transmission: investigating synaptic vesicle fusion at non-conventional release sites in hippocampal neurons
突触外传递:研究海马神经元非常规释放位点的突触小泡融合
- 批准号:
BB/F018371/1 - 财政年份:2009
- 资助金额:
$ 56.57万 - 项目类别:
Research Grant
相似国自然基金
SOD1介导星形胶质细胞活化调控hNSC移植细胞存活的机制研究
- 批准号:82372136
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Periostin蛋白促细胞生存分子机理研究
- 批准号:30570935
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Standard Grant
EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet
EAGER:ANT LIA:生存或灭亡:南极西部冰盖微生物生存和长期存在的记录
- 批准号:
2427241 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Standard Grant
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
How does membrane lipid remodelling enable intracellular survival of B. cenocepacia?
膜脂重塑如何使新洋葱伯克霍尔德氏菌在细胞内存活?
- 批准号:
BB/X01651X/1 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Research Grant
Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
- 批准号:
2349981 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Continuing Grant
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Knowledge is Survival: A New History of American Exploration
知识就是生存:美国探索新史
- 批准号:
2317588 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Standard Grant
Anti-Complement Immunotherapy for Pancreatic Cancer
胰腺癌的抗补体免疫治疗
- 批准号:
10751872 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
A threat or key to survival under climate change?: Genetic dynamics of hybridisation between a subalpine conifer and its warm adapted congener
气候变化下生存的威胁还是关键?:亚高山针叶树与其温暖适应同源树之间杂交的遗传动力学
- 批准号:
24K01787 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325381 - 财政年份:2024
- 资助金额:
$ 56.57万 - 项目类别:
Standard Grant