SUMOcode: deciphering how SUMOylation enables plants to adapt to their environment
SUMOcode:解读 SUMOylation 如何使植物适应环境
基本信息
- 批准号:BB/V003534/1
- 负责人:
- 金额:$ 464.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
At a basic level the rules that govern life is defined by an organism's genetic code (like the text of a book) and the signals it receives from the environment (like the interpretation of the reader of the text). The combination of these two (the genetic code and the signals) makes an organism behave and develop the way it does. At a molecular level there are several critical systems that control the way an organism responds to its environment. These can be (1) long-term responses through the silencing of the genetic code (like removing parts of the text in the book so it can't be interpreted) or (2) more rapid responses through modifications of the system (like annotation to parts of the text of a book which changes the way it is interpreted). Understanding these responses is essential to our understanding of how an organism functions and how an organism changes based on their environment. Here we are focusing on the second type of response, which at a molecular level are initiated by "post-translational modifications (PTMs)" (this a way of changing the function of the existing machinery in a cell). PTMs act at the core of every biological system. Taking signals from outside the cell and "coding" molecular interactions to change the way cells function. This is critical in every biological process. There are several types of PTMs, but one of the most important but whose code is not defined is SUMOylation. Here we aim to take a holistic approach to understanding the SUMO code.In this programme we will develop a SUMO machinery cell atlas (a resource that will characterize each part of the machinery), how, in which cells and when it works, so that a map of the key events that trigger a SUMOylation response to environmental cues can be revealed. We will use the model plant, Arabidopsis, arguably the best non-human, multicellular organism for this scale of interrogation. It has a plethora of tools and resources that will allow us to dissect the SUMO code in detail and across different cell types, different stages of development and across different response times. This mapping of SUMOylation will reveal the 'hubs' that the SUMO machinery targets to cause a cellular response, revealing how the pathway functions and how it can be manipulated to combat environmental challenges or disease. SUMOylation has already been shown by our group and others that it is important for the way a cell responds to environmental stresses. For example, plants adapt to changes in their environment (heat, water availability, salt, etc) by modifying their growth and development (to enhance their ability to survive and flourish), through PTMs like SUMOylation. Therefore, a key output of this programme will be a set of tools that will translate the SUMO language across the plant kingdom and provide insights into animal and human health and disease. Our ultimate goal is to 'enable' researchers from a range of disciplines, plant breeders, chemical companies and beyond to edit the SUMO code discovered here to improve crop resilience, future proofing them against ongoing climate instability and change, and to catalyse new insights across plants and animals into the rules that govern an organisms behaviour and responses to the environment that surrounds them.
在基本层面上,控制生命的规则是由生物体的遗传密码(如书中的文本)和它从环境中接收的信号(如文本读者的解释)定义的。这两个(遗传密码和信号)的结合使生物体的行为和发展方式。在分子水平上,有几个关键系统控制着生物体对其环境的反应方式。这些可以是(1)通过沉默遗传密码的长期反应(如删除书中的部分文本,使其无法被解释)或(2)通过修改系统的更快速的反应(如对一本书的部分文本进行注释,改变其解释方式)。了解这些反应对于我们了解生物体如何发挥作用以及生物体如何根据环境发生变化至关重要。在这里,我们重点关注第二种类型的反应,它在分子水平上由“翻译后修饰(PTM)”(这是改变细胞中现有机制功能的一种方式)启动。PTM在每个生物系统的核心发挥作用。从细胞外获取信号并“编码”分子相互作用以改变细胞功能。这在每一个生物过程中都是至关重要的。有几种类型的PTM,但最重要的一种,但其代码没有定义是SUMO化。在本项目中,我们将开发一个SUMO机器细胞图谱(一个描述机器每个部分的资源),如何,在哪些细胞中以及何时工作,以便揭示触发SUMO化反应的关键事件的地图。我们将使用模式植物,拟南芥,可以说是最好的非人类,多细胞生物体的这种规模的审讯。它有大量的工具和资源,使我们能够详细剖析SUMO代码,并跨越不同的细胞类型,不同的开发阶段和不同的响应时间。SUMO化的这种映射将揭示SUMO机制靶向引起细胞反应的“枢纽”,揭示该途径如何发挥作用以及如何操纵它来应对环境挑战或疾病。SUMO化已经被我们的团队和其他人证明,它对细胞应对环境压力的方式很重要。例如,植物通过改变它们的生长和发育(以增强它们的生存和繁荣能力)来适应环境(热量,水的可用性,盐等)的变化,通过PTM如SUMO化。因此,该计划的一个关键成果将是一套工具,将在植物王国中翻译SUMO语言,并提供对动物和人类健康和疾病的见解。我们的最终目标是“使”来自一系列学科的研究人员,植物育种家,化学公司等能够编辑在这里发现的SUMO代码,以提高作物的适应能力,使其能够抵御持续的气候不稳定和变化,并促进植物和动物对控制生物体行为和对周围环境反应的规则的新见解。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turning up the volume: How root branching adaptive responses aid water foraging.
- DOI:10.1016/j.pbi.2023.102405
- 发表时间:2023-06
- 期刊:
- 影响因子:9.5
- 作者:P. Mehra;Rebecca Fairburn;N. Leftley;Jason Banda;M. Bennett
- 通讯作者:P. Mehra;Rebecca Fairburn;N. Leftley;Jason Banda;M. Bennett
Non-invasive hydrodynamic imaging in plant roots at cellular resolution.
- DOI:10.1038/s41467-021-24913-z
- 发表时间:2021-08-03
- 期刊:
- 影响因子:16.6
- 作者:Pascut FC;Couvreur V;Dietrich D;Leftley N;Reyt G;Boursiac Y;Calvo-Polanco M;Casimiro I;Maurel C;Salt DE;Draye X;Wells DM;Bennett MJ;Webb KF
- 通讯作者:Webb KF
The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis.
- DOI:10.1093/plcell/koac142
- 发表时间:2022-07-30
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ari Sadanandom其他文献
Single-cell transcriptomics reveal how root tissues adapt to soil stress
单细胞转录组学揭示了根组织如何适应土壤胁迫
- DOI:
10.1038/s41586-025-08941-z - 发表时间:
2025-04-30 - 期刊:
- 影响因子:48.500
- 作者:
Mingyuan Zhu;Che-Wei Hsu;Lucas L. Peralta Ogorek;Isaiah W. Taylor;Salvatore La Cavera;Dyoni M. Oliveira;Lokesh Verma;Poonam Mehra;Medhavinee Mijar;Ari Sadanandom;Fernando Perez-Cota;Wout Boerjan;Trevor M. Nolan;Malcolm J. Bennett;Philip N. Benfey;Bipin K. Pandey - 通讯作者:
Bipin K. Pandey
Ari Sadanandom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ari Sadanandom', 18)}}的其他基金
High sensitivity LC-MS to understand the role of Proteomes in the rules of life for Plant scientists and N8 partners
高灵敏度 LC-MS 可帮助植物科学家和 N8 合作伙伴了解蛋白质组在生命规则中的作用
- 批准号:
BB/W019825/1 - 财政年份:2022
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Divining roots: uncovering how SUMO mediated responses control developmental plasticity
探究根源:揭示 SUMO 介导的反应如何控制发育可塑性
- 批准号:
BB/T003022/1 - 财政年份:2020
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
A Decision Support tool for Potato Blackleg Disease (DeS-BL)
马铃薯黑胫病决策支持工具 (DeS-BL)
- 批准号:
BB/T010533/1 - 财政年份:2020
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Charting the protein modifications systems that underpin submergence tolerance in rice
绘制支撑水稻耐淹性的蛋白质修饰系统
- 批准号:
BB/R002754/1 - 财政年份:2017
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Hydro-patterning: a novel mechanism controlling root branching
水力图案:控制根分枝的新机制
- 批准号:
BB/M002136/1 - 财政年份:2015
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Nitrogen availability influences Septoria defence in wheat by modulating WRKY transcription factor gene expression.
氮可用性通过调节 WRKY 转录因子基因表达来影响小麦壳针孢防御。
- 批准号:
BB/M022048/1 - 财政年份:2015
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
相似海外基金
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
$ 464.75万 - 项目类别:
Fellowship
Deciphering how 3D genome organization orchestrates cardiac cellular identity
解读 3D 基因组组织如何协调心脏细胞身份
- 批准号:
10574267 - 财政年份:2023
- 资助金额:
$ 464.75万 - 项目类别:
Deciphering the Miracle on the Han: Lessons for the World on How South Korea Escaped Poverty and Transformed its Economy
解读韩国奇迹:韩国如何摆脱贫困并实现经济转型给世界的教训
- 批准号:
ES/W011360/1 - 财政年份:2022
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
CAREER Deciphering how enhancers encode tissue-specificity and phenotypes
破译增强子如何编码组织特异性和表型
- 批准号:
2239957 - 财政年份:2022
- 资助金额:
$ 464.75万 - 项目类别:
Continuing Grant
A cellular identity crisis: Deciphering how mammary epithelial cells form and maintain their identity
细胞身份危机:破译乳腺上皮细胞如何形成和维持其身份
- 批准号:
nhmrc : 2003832 - 财政年份:2021
- 资助金额:
$ 464.75万 - 项目类别:
Ideas Grants
How do molluscs build their shells? Deciphering calcium transport mechanisms in shellfish biomineralisation using genome-editing
软体动物如何建造贝壳?
- 批准号:
2607462 - 财政年份:2021
- 资助金额:
$ 464.75万 - 项目类别:
Studentship
Deciphering how nutrient status impacts plant defence
解读营养状况如何影响植物防御
- 批准号:
DE210101200 - 财政年份:2021
- 资助金额:
$ 464.75万 - 项目类别:
Discovery Early Career Researcher Award
NSF Postdoctoral Fellowship in Biology FY 2021: Deciphering how adipokine control of the epigenome impacts an organism's starvation response
2021 财年 NSF 生物学博士后奖学金:解读脂肪因子对表观基因组的控制如何影响生物体的饥饿反应
- 批准号:
2109398 - 财政年份:2021
- 资助金额:
$ 464.75万 - 项目类别:
Fellowship Award
CAREER: Deciphering how dynamic environments and nutrition affect life history tradeoffs in a highly migratory insect pest
职业:破译动态环境和营养如何影响高度迁徙害虫的生活史权衡
- 批准号:
1942054 - 财政年份:2020
- 资助金额:
$ 464.75万 - 项目类别:
Continuing Grant
Deciphering how plants control water and salt co-transport
破译植物如何控制水和盐的协同运输
- 批准号:
FT180100476 - 财政年份:2019
- 资助金额:
$ 464.75万 - 项目类别:
ARC Future Fellowships














{{item.name}}会员




