The Molecular Basis of Chromosome Periphery Function, Structure and Composition
染色体外围功能、结构和组成的分子基础
基本信息
- 批准号:BB/V005626/1
- 负责人:
- 金额:$ 129.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Background: The purpose of mitosis is to divide our DNA equally between two new daughter cells, an event that is essential for life. The DNA content of just one cell extends over two metres in length, if unravelled. This presents a challenge for cells that need to divide. To make mitosis as efficient as possible our DNA is condensed into 46 compact structures known as chromosomes (with a famous 'X' shape). However, even assembled into chromosomes DNA separation during mitosis can go wrong, with some cells receiving an abnormal amount of DNA. This is known as aneuploidy, and can lead to cancer and birth defects. It is critical that we fully understand each and all of the mechanisms that lead to aneuploidy, so that we can prevent or treat it. My research focuses on the mitotic chromosome periphery (MCP) a sheath that covers the entire outer surface of mitotic chromosomes, like a thick winter glove (the MCP) on a hand (the chromosome). The MCP was discovered over 100 years ago, however until recently no one has been able to remove it and therefore test if or how the MCP might be an important component of chromosomes. I recently discovered the first ever way to remove the MCP through a protein called Ki67 (a key component of the sheath). I went on to show that the MCP is important for mitotic chromosomes to function correctly and, most recently, that it may also have a role in aneuploidy. Despite these advances we still do not know; what the sheath is made of, what its full functions are, what it looks like (its structure) and finally its contribution to diseases. The role of Ki67 in each of these 'unknowns' is also unclear, but is important as Ki67 has been implicated in the progression of some cancers and is currently being tested as a drug target.Aims: The goal of this proposal is to build on my unpublished data and investigate how the MCP (and Ki67) contributes to aneuploidy. This is important, because a better understanding of this sheath may reveal new preventative measure or treatments for cancer.Aim 1 - Function) Use microscopy experiments, including 3D correlative light electron microscopy (3DCLEM), an advanced imaging tool that I recently developed, to determine how and why the MCP can cause aneuploidy.Aim 2 - Structure) Investigate what the MCP looks like on a nanometre scale (a human hair is ~50,000nm in diameter, the MCP is ~100nm thick) and determine how its structure is important for its function. This will be performed using CryoCLEM, one of the most powerful imaging tools in the world and that few people can perform.Aim 3 - Composition) Investigate what the MCP is made of and explore if other components also have important functions, like Ki67, that might be used as a drug target during future studies.Host Institute and Collaborators: My lab will be based at the University of Nottingham Biodiscovery Institute III. This brand new £25million building contains state of the art equipment and hundreds of disease experts, including; medical doctors, cancer researchers and drug discovery specialists. This mix of expertise is designing to maximise research impact, making the progression from basic research (using cells in a dish) to treatments (for patients), as efficient as possible. I am fortunate to have an existing network of internationally renowned collaborators. Since my arrival at UoN this network has expanded to include cancer biologists such as Anna Grabowska and Alan McIntyre and technical experts such as Kenton Arkill and Robert Brandt (industrial collaboration with ThermoFisher). Since I discovered how to remove the MCP this field has been revitalised, with several labs also confirming that the MCP is a critical component of mitotic chromosomes. My contribution to this revival of interest has been significant and using my skills, comprehensive knowledge of the MCP and important collaborations, I am in a unique position to drive this research and become a world leader in this field.
背景:有丝分裂的目的是在两个新的子细胞之间平均地分裂我们的DNA,这是生命所必需的事件。如果将一个细胞的DNA内容展开,其长度就超过两米。这对需要分裂的细胞提出了挑战。为了使有丝分裂尽可能有效,我们的DNA被浓缩成46个紧密的结构,称为染色体(具有著名的“X”形)。然而,在有丝分裂过程中,即使组装成染色体的DNA分离也可能出错,一些细胞接收到异常数量的DNA。这被称为非整倍体,可能导致癌症和出生缺陷。至关重要的是,我们要充分了解导致非整倍体的所有机制,这样我们才能预防或治疗它。我的研究重点是有丝分裂染色体外周(MCP),一种覆盖有丝分裂染色体整个外表面的鞘,就像一只戴在手上(染色体)的厚厚的冬季手套(MCP)。MCP早在100多年前就被发现了,但直到最近,还没有人能够将其移除,从而测试MCP是否或如何成为染色体的重要组成部分。我最近发现了第一种通过一种叫做Ki67的蛋白质(鞘的关键成分)去除MCP的方法。我继续证明MCP对有丝分裂染色体的正常运作很重要,最近,它也可能在非整倍体中起作用。尽管取得了这些进步,我们仍然不知道;鞘是由什么组成的,它的全部功能是什么,它是什么样子的(它的结构),最后是它对疾病的贡献。Ki67在这些“未知”中的作用也不清楚,但它很重要,因为Ki67与一些癌症的进展有关,目前正在作为药物靶点进行测试。目的:本提案的目标是建立在我未发表的数据基础上,研究MCP(和Ki67)如何促进非整倍性。这很重要,因为更好地了解这种鞘可能会揭示新的预防措施或治疗癌症的方法。使用显微镜实验,包括3D相关光电子显微镜(3DCLEM),我最近开发的一种先进的成像工具,来确定MCP如何以及为什么会导致非整倍体。目标2 -结构)研究纳米尺度上的MCP是什么样子的(人类头发的直径约为50,000纳米,MCP的厚度约为100纳米),并确定其结构对其功能的重要性。这将使用CryoCLEM进行,这是世界上最强大的成像工具之一,很少有人能做到。目的3 -组成)研究MCP是由什么组成的,并探索其他成分是否也有重要的功能,如Ki67,可能在未来的研究中用作药物靶点。主办机构和合作者:我的实验室将设在诺丁汉大学第三生物发现研究所。这座耗资2500万英镑的新建筑拥有最先进的设备和数百名疾病专家,包括;医生、癌症研究人员和药物发现专家。这种专业知识的组合旨在最大限度地发挥研究影响,使从基础研究(在培养皿中使用细胞)到治疗(对患者)的进展尽可能高效。我很幸运有一个国际知名的合作者网络。自从我来到联合国后,这个网络已经扩展到包括癌症生物学家,如安娜格拉博夫斯卡和艾伦麦金太尔,以及技术专家,如肯顿阿尔基尔和罗伯特勃兰特(与ThermoFisher的工业合作)。自从我发现了如何去除MCP后,这个领域得到了振兴,几个实验室也证实了MCP是有丝分裂染色体的关键组成部分。我对这一兴趣复兴的贡献是显著的,利用我的技能,对MCP的全面了解和重要的合作,我处于一个独特的位置来推动这项研究,并成为这一领域的世界领导者。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic early clusters of nodal proteins contribute to node of Ranvier assembly during myelination of peripheral neurons.
- DOI:10.7554/elife.68089
- 发表时间:2021-07-09
- 期刊:
- 影响因子:7.7
- 作者:Malavasi EL;Ghosh A;Booth DG;Zagnoni M;Sherman DL;Brophy PJ
- 通讯作者:Brophy PJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Booth其他文献
Advances in 3D bioprinting for urethral tissue reconstruction
3D生物打印在尿道组织重建方面的进展
- DOI:
10.1016/j.tibtech.2023.10.009 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:14.900
- 作者:
Daniel Booth;Ronak Afshari;Mahsa Ghovvati;Kaavian Shariati;Renea Sturm;Nasim Annabi - 通讯作者:
Nasim Annabi
PO-621-03 DUAL-CHAMBER LEADLESS PACEMAKER ENABLES ROBUST ATRIOVENTRICULAR SYNCHRONY IN VARIOUS POSTURES AND PACING CONFIGURATIONS
- DOI:
10.1016/j.hrthm.2022.03.838 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Reinoud Knops;Daniel J. Cantillon;Petr Neuzil;Rajesh S. Banker;Mayer Rashtian;Rahul N. Doshi;Daniel Booth;Weiqun Yang;Aditya Goil;Nima Badie;David Ligon;Matthew G. Fishler - 通讯作者:
Matthew G. Fishler
CI-525-03 DEVICE-TO-DEVICE COMMUNICATION FOR A NOVEL DUAL-CHAMBER LEADLESS PACEMAKER SYSTEM: RELIABILITY OF MAINTAINING ATRIOVENTRICULAR SYNCHRONY IN AN OVINE MODEL OF AV CONDUCTION BLOCK
- DOI:
10.1016/j.hrthm.2022.03.650 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Vivek Y. Reddy;Reinoud Knops;Daniel J. Cantillon;Petr Neuzil;Alok Gambhir;Rahul N. Doshi;Daniel Booth;Weiqun Yang;Aditya Goil;Nima Badie;David Ligon;Matthew G. Fishler - 通讯作者:
Matthew G. Fishler
Daniel Booth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
求解Basis Pursuit问题的数值优化方法
- 批准号:11001128
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10799361 - 财政年份:2021
- 资助金额:
$ 129.77万 - 项目类别:
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10277063 - 财政年份:2021
- 资助金额:
$ 129.77万 - 项目类别:
Molecular basis of clathrin-mediated stabilization of microtubules for chromosome segregation
网格蛋白介导的染色体分离微管稳定的分子基础
- 批准号:
394694869 - 财政年份:2017
- 资助金额:
$ 129.77万 - 项目类别:
Research Grants
Molecular Basis and Role of Indirect Chromosome Segregation in Hyperploid Cancer Cells
超倍体癌细胞中间接染色体分离的分子基础和作用
- 批准号:
9123332 - 财政年份:2015
- 资助金额:
$ 129.77万 - 项目类别:
Molecular Basis and Role of Indirect Chromosome Segregation in Hyperploid Cancer Cells
超倍体癌细胞中间接染色体分离的分子基础和作用
- 批准号:
9315607 - 财政年份:2015
- 资助金额:
$ 129.77万 - 项目类别:
Molecular Dynamics and basis of DNA tether structure for preventing radiation-induced chromosome fragmentation
防止辐射诱导染色体断裂的 DNA 系链结构的分子动力学和基础
- 批准号:
26701006 - 财政年份:2014
- 资助金额:
$ 129.77万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Molecular basis of formation and regulation of insect holocentric chromosome
昆虫全着丝粒染色体形成与调控的分子基础
- 批准号:
26252057 - 财政年份:2014
- 资助金额:
$ 129.77万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of the molecular mechanism and structural basis of the chromosome condensation protein, condensin
染色体缩合蛋白condensin的分子机制和结构基础分析
- 批准号:
18570188 - 财政年份:2006
- 资助金额:
$ 129.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular basis of centromeric chromatin required for equal chromosome segregation
染色体平等分离所需的着丝粒染色质的分子基础
- 批准号:
14380334 - 财政年份:2002
- 资助金额:
$ 129.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)