Biocatalysis for novel drug synthesis: re-purposing haemoproteins for late stage heteroatom and isotope functionalisation of pharmaceuticals

新药物合成的生物催化:重新利用血红蛋白用于药物的后期杂原子和同位素功能化

基本信息

  • 批准号:
    BB/V005464/1
  • 负责人:
  • 金额:
    $ 38.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This work aims to develop new enzymes to allow chemists to synthesise complex drug compounds in a more straightforward manner. Enzymes are biological catalysts, and they are increasingly being integrated into large scale chemical manufacture (such as for the pharmaceutical and flavour/fragrance markets). Biocatalytic routes hold a number of advantages over traditional chemical methods, particularly in their ability to carry out very specific reactions on complex molecules under environmentally benign conditions. The specific nature of enzymes allows the steps in a manufacturing process to be minimised, generating less waste and requiring less energy. However, enzymes have their limitations, particularly if the desired reactivity is not known to occur in the natural biological systems from which they originate. The goal of this work is to "engineer" the enzymes to enable them carry out new non-natural reactions, which are otherwise very difficult for chemists to achieve.The target reaction for this work is the conversion of carbon-hydrogen (C-H) bonds to carbon-fluorine (C-F) or carbon-deuterium (C-D) bonds (deuterium is a safe isotope of hydrogen). Whilst these reactions sound simple, they are very hard to achieve in a controlled manner, and often require costly and wasteful reaction procedures. Yet the C-F and C-D bonds are very valuable to chemists designing new medicinal compounds, because they stabilise the drugs against enzymes in the body, such as the liver). The liver enzymes degrade the drug by attacking the C-H bond and converting it to a C-OH bond, marking it for removal from the body. Hence, swapping the C-H for C-F or C-D before the drug is taken can allow it to last longer in the body and therefore lower the dose required - which can very beneficial for the patient. The C-F strategy is so effective, that it was used in around 50 % of drugs approved in 2018. The C-D approach is newer, but has now been used in commercial drug compounds too. Unfortunately there are currently no widely available biocatalytic routes to converting C-H to C-F and C-D bonds.Creating biocatalytic routes to C-F and C-D bonds would allow new drug molecules to be more easily prepared, allowing medicinal chemists to design and test more drugs more quickly and with less waste. In this work, enzymes like those found in the liver (and elsewhere in nature) are used as inspiration to design new strategies to form C-F and C-D bonds. The artificial enzymes will still be required to break the C-H bond, but then react in a different way to form C-F or C-D rather than C-OH. At this stage, even if the new enzymes for C-F or C-D bonds to only a very small degree, it will mark a major advance, and will enable further study to get the new behaviour to a level where it would be useful for drug development and manufacture. The benefits of this research are therefore three-fold: (1) it will enable researchers working on drug discovery to make desired compounds for testing more quickly and easily. (2) it will enable manufacturers of high-value pharmaceuticals to establish more sustainable manufacturing practices, and (3) it will increase the understanding of the functioning of a very important class of enzymes, which will benefit other aspects of industrial biotechnology (such as flavour/fragrance manufacture). The work therefore falls into the BBSRC remit of Industrial Biotechnology and Bioenergy (the use of biological resources for producing and processing materials, chemicals (including pharmaceutical precursors and biopharmaceuticals) and energy). In the long term, it will make significant contributions to the economy of the UK-based pharmaceutical industry and public health.
这项工作旨在开发新的酶,使化学家能够以更直接的方式合成复杂的药物化合物。酶是生物催化剂,并且它们越来越多地被整合到大规模化学制造中(例如用于制药和香精/香料市场)。与传统化学方法相比,生物催化途径具有许多优势,特别是在环境友好条件下对复杂分子进行非常特定的反应的能力。酶的特殊性质使生产过程中的步骤最小化,产生更少的废物,需要更少的能源。然而,酶有其局限性,特别是如果不知道所需的反应性发生在它们起源的天然生物系统中。这项工作的目标是“改造”酶,使它们能够进行新的非自然反应,否则化学家很难实现。这项工作的目标反应是将碳氢(C-H)键转化为碳氟(C-F)键或碳氘(C-D)键(氘是氢的安全同位素)。虽然这些反应听起来很简单,但它们很难以受控的方式实现,并且通常需要昂贵且浪费的反应程序。然而,C-F和C-D键对化学家设计新的药物化合物非常有价值,因为它们使药物稳定,使其免受体内酶(如肝脏)的影响。肝酶通过攻击C-H键并将其转化为C-OH键来降解药物,将其标记为从体内去除。因此,在服用药物之前将C-H换成C-F或C-D可以使其在体内持续更长时间,从而降低所需的剂量-这对患者非常有益。C-F策略非常有效,在2018年批准的药物中约有50%使用了它。C-D方法较新,但现在也已用于商业药物化合物。不幸的是,目前还没有广泛可用的生物催化途径将C-H转化为C-F和C-D键。创建C-F和C-D键的生物催化途径将使新的药物分子更容易制备,使药物化学家能够更快地设计和测试更多的药物,减少浪费。在这项工作中,类似于在肝脏(和自然界其他地方)中发现的酶被用作设计形成C-F和C-D键的新策略的灵感。人工酶仍然需要破坏C-H键,但随后以不同的方式反应形成C-F或C-D而不是C-OH。在这个阶段,即使新的C-F或C-D键合酶只有很小的程度,它也将标志着一个重大的进步,并将使进一步的研究能够使新的行为达到对药物开发和制造有用的水平。因此,这项研究的好处有三个方面:(1)它将使研究人员能够更快、更容易地发现药物,以制备所需的化合物进行测试。(2)它将使高价值药品的制造商能够建立更可持续的制造做法,以及(3)它将增加对一类非常重要的酶的功能的了解,这将有益于工业生物技术的其他方面(如香料/香水制造)。因此,这项工作福尔斯属于BBSRC工业生物技术和生物能源(利用生物资源生产和加工材料、化学品(包括药物前体和生物药物)和能源)的职权范围。从长远来看,它将为英国制药业和公共卫生的经济做出重大贡献。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined biocatalytic reductive amination and deuteration to prepare isotopically labelled amino acids for NMR analysis of large proteins
联合生物催化还原胺化和氘化制备同位素标记的氨基酸,用于大蛋白质的 NMR 分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowbotham JS
  • 通讯作者:
    Rowbotham JS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Rowbotham其他文献

Jack Rowbotham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
  • 批准号:
    10991546
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
  • 批准号:
    10825849
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
In-Vitro evaluation of the effectiveness of a novel Dual Drug Coated Balloon catheter to treat Vascular and cardiovascular diseases
新型双药物涂层球囊导管治疗血管和心血管疾病有效性的体外评估
  • 批准号:
    10109618
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
    Launchpad
Identifying novel & repurposing drug targets for Atrial Fibrillation MEDicines
识别小说
  • 批准号:
    EP/Z000211/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
    Research Grant
Topological Design of Novel Foldamer-Polymer Scaffolds for Applications in Drug Delivery and to Probe New Agents with Biological Activity
新型折叠聚合物支架的拓扑设计,用于药物输送和探索具有生物活性的新药物
  • 批准号:
    2902781
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
    Studentship
Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 38.8万
  • 项目类别:
A Novel Ruthenium Antimicrobial Platform Technology - Preventing and Treating Multi-Drug Resistant Infections
新型钌抗菌平台技术——预防和治疗多重耐药感染
  • 批准号:
    10050214
  • 财政年份:
    2023
  • 资助金额:
    $ 38.8万
  • 项目类别:
    Grant for R&D
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
  • 批准号:
    23K09020
  • 财政年份:
    2023
  • 资助金额:
    $ 38.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了