Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation

解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节

基本信息

  • 批准号:
    BB/W001217/1
  • 负责人:
  • 金额:
    $ 80.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Stomata are pores that open and close to protect against leaf drying while enabling CO2 entry into the leaf for photosynthesis. They can limit photosynthesis by 50% or more when demand exceeds water supply and they exert a major control on water and carbon cycles of the world. Stomata are at the centre of a crisis in fresh water availability and crop production that is expected over the next 20-30 years. Global agricultural water usage has increased 6-fold in the past 100 years, twice as fast as the human population; even in the UK irrigation has expanded 10-fold in the past 30 years. The droughts of 2010-12 and 2018 cost UK farmers alone an estimated £1.2B and worldwide costs year-by-year are estimated in the hundreds of billions of pounds over the past five years.Stomata in most plants track the immediate demand for CO2 by photosynthesis in the leaf, opening in the light and closing in the dark. However, stomatal responses are slow by comparison with that of photosynthesis. Natural fluctuations in daylight, for example as clouds pass overhead, degrade photosynthetic carbon assimilation and water use efficiencies, principally because stomatal responses generally lag behind changes in light. We know that substantial gains in carbon assimilation and water use efficiencies are possible by accelerating stomatal movements, but we need to understand how CO2 affects guard cell mechanics and its integration with mesophyll-derived changes in CO2 in order to inform efforts in engineering stomatal kinetics.Guard cell transport is integral to controlling stomatal aperture. Guard cells surround the stomatal pore and respond to an array of extracellular signals, including light and CO2, to regulate stomatal aperture. Guard cells coordinate changes in the activities of a number of transporters, notably of ion channels that facilitate K+ and Cl- ion fluxes, and they remodel the cell membrane. Both the changes ion flux and membrane remodelling are needed for stomatal movements. Nonetheless, the challenge remains to understand how these changes arise and are coordinated, especially by CO2.We have discovered that the dominant Cl- channel, SLAC1, binds selectively within a multi-protein complex that incorporates a so-called SNARE protein, SYP121, that is vital for remodelling of the cell membrane, and with the carbonic anhydrase beta-CA4. The carbonic anhydrase is one of a small number of proteins known in the guard cells that bind with, and hence are capable of responding to CO2 directly. SYP121 also binds a subset of K+ channels to co-regulate K+ ion flux with membrane remodelling during stomatal movements. We find now that the assembly of SYP121 with beta-CA4 and SLAC1 confers a strong dependence of the Cl- channel on near-ambient changes in CO2.These are precisely the characteristics expected for the long-sought mechanism of CO2-mediated enhancement in Cl- flux and stomatal movements. They point to the multi-protein complex in coordinating Cl- as well as K+ flux with membrane remodelling and in conferring a CO2 sensitivity directly on these events. We propose here to resolve the mechanics of beta-CA4-SYP121-SLAC1 interactions in order to understand how CO2 regulates these events for stomatal closure. Thus, our primary goal is to develop a quantitative understanding of the mechanics of this novel SLAC1 supercomplex and the coordinate regulation it confers on the physiology of CO2 responses in guard cells. Among others, we want to resolve the key protein domains for binding of SYP121 with beta-CA4 and SLAC1, their impact on CA and SLAC1 activities, and their contributions to the CO2-dependence of SLAC1. The research proposed is for fundamental knowledge. It nonetheless holds longer-term relevance for crop improvement with benefits for producers, consumers, and the environment.
气孔是打开和关闭的气孔,以防止叶片干燥,同时使CO2进入叶片进行光合作用。当需求超过供水时,它们可以将光合作用限制50%或更多,并且它们对世界的水和碳循环施加主要控制。气孔是未来20-30年淡水供应和作物生产危机的核心。在过去的100年里,全球农业用水量增加了6倍,是人口增长速度的两倍;即使在英国,灌溉也在过去30年里扩大了10倍。2010-12年和2018年的干旱仅英国农民就损失了约12亿英镑,在过去的五年里,全球每年的损失估计为数千亿英镑。大多数植物的气孔通过叶片中的光合作用来跟踪对二氧化碳的直接需求,在光照下打开,在黑暗中关闭。然而,气孔的反应与光合作用相比是缓慢的。日光的自然波动,例如云从头顶经过,降低了光合作用的碳同化和水的利用效率,主要是因为气孔的反应通常滞后于光的变化。我们知道,碳同化和水利用效率的实质性收益是可能的,通过加速气孔运动,但我们需要了解CO2如何影响保卫细胞力学及其整合与叶肉衍生的变化CO2,以告知工程气孔动力学的努力。保卫细胞运输是不可或缺的控制气孔孔径。保卫细胞围绕气孔周围,并响应一系列细胞外信号,包括光和CO2,以调节气孔开度。保卫细胞协调许多转运蛋白(特别是促进K+和Cl-离子通量的离子通道)活性的变化,并重塑细胞膜。气孔运动需要离子流的变化和膜的重塑。尽管如此,挑战仍然是要了解这些变化是如何产生和协调的,特别是通过CO2。我们已经发现,占主导地位的Cl-通道,SLAC 1,选择性地结合在一个多蛋白质复合物内,该复合物包含一个所谓的SNARE蛋白,SYP 121,这对细胞膜的重塑至关重要,并与碳酸酐酶β-CA 4结合。碳酸酐酶是保卫细胞中已知的少数蛋白质之一,其与CO2结合,因此能够直接响应CO2。SYP 121还结合K+通道的子集,以在气孔运动期间与膜重塑共调节K+离子通量。我们发现SYP 121与beta-CA 4和SLAC 1的组装赋予了Cl-通道对近环境CO2变化的强烈依赖性。这些特征正是人们长期以来对CO2介导的Cl-通量和气孔运动增强机制的预期。他们指出,多蛋白质复合物在协调Cl-以及K+通量与膜重塑,并直接赋予这些事件的CO2敏感性。我们在这里建议解决beta-CA 4-SYP 121-SLAC 1相互作用的机制,以了解CO2如何调节这些气孔关闭事件。因此,我们的主要目标是发展一个定量的了解这种新的SLAC 1超复合物的力学和协调调节它赋予的生理CO2反应在保卫细胞。其中,我们希望解决SYP 121与β-CA 4和SLAC 1结合的关键蛋白结构域,它们对CA和SLAC 1活性的影响,以及它们对SLAC 1的CO2依赖性的贡献。所提出的研究是为了基础知识。尽管如此,它对作物改良具有长期意义,对生产者、消费者和环境都有好处。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering stomata for enhanced carbon capture and water-use efficiency.
  • DOI:
    10.1016/j.tplants.2023.06.002
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    20.5
  • 作者:
    Thu Binh-Ahn Nguyen;Cécile Lefoulon;T. Nguyen;M. Blatt;William Carroll
  • 通讯作者:
    Thu Binh-Ahn Nguyen;Cécile Lefoulon;T. Nguyen;M. Blatt;William Carroll
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Blatt其他文献

Long-Term Treatment Outcomes and Predictors of Treatment Success following Genicular Nerve Radiofrequency Neurotomy for Chronic Knee Pain; a Cross-Sectional Cohort Study
  • DOI:
    10.1016/j.inpm.2023.100303
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tyler T. Woodworth;Marc Caragea;Jason Mascoe;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd Brown;Daniel Carson;Keith Kuo;Dustin Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Megan Mills;Taylor Burnham;Aaron Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick
The association of payer type on genicular radiofrequency neurotomy treatment outcomes: Results of a cross-sectional study
付款人类型与膝关节射频神经切断术治疗结果的关联:横断面研究的结果
  • DOI:
    10.1016/j.inpm.2024.100407
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Braun;Jason Mascoe;Marc Caragea;Tyler Woodworth;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd K. Brown;Daniel Carson;Keith T. Kuo;Dustin J. Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Amanda N Cooper;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick
Evaluating the Effectiveness of Genicular Radiofrequency Neurotomy for Chronic Knee Pain using the Patient-Reported Outcomes Measurement Information System (PROMIS) Global Health Physical Function Domain: Results of a Cross-Sectional Study
  • DOI:
    10.1016/j.inpm.2023.100304
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Todd K. Brown;Marc A. Caragea;Margaret Beckwith;Amelia Ni;Ling Chen;Tyler Woodworth;Michael Blatt;Cole Cheney;Daniel Carson;Keith T. Kuo;Dustin Randall;Emily Y. Huang;Andrea Carefoot;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick

Michael Blatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Blatt', 18)}}的其他基金

A SNARE-Aquaporin complex in stomatal hydraulics
气孔水力学中的 SNARE-水通道蛋白复合物
  • 批准号:
    BB/X013383/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
  • 批准号:
    BB/T013508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Engineering ion flux of the stomatal complex for enhanced photosynthesis and water use efficiency
工程气孔复合体的离子通量以增强光合作用和水分利用效率
  • 批准号:
    BB/T006153/1
  • 财政年份:
    2020
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
15 NSFBIO SAUR regulation of stomatal aperture
15 NSFBIO SAUR 气孔孔径调节
  • 批准号:
    BB/P011586/1
  • 财政年份:
    2017
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
  • 批准号:
    BB/N01832X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Dissecting a new and vital checkpoint in SNARE recycling and plant growth
剖析 SNARE 回收和植物生长中一个新的重要检查点
  • 批准号:
    BB/N006909/1
  • 财政年份:
    2016
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Developing a synthetic approach to manipulating guard cell membrane transport and stomatal control
开发操纵保卫细胞膜运输和气孔控制的合成方法
  • 批准号:
    BB/L019205/1
  • 财政年份:
    2015
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Analysing GORK clustering for enhanced stomatal control
分析 GORK 聚类以增强气孔控制
  • 批准号:
    BB/M001601/1
  • 财政年份:
    2015
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
14-PSIL MAGIC: a multi-tiered approach to gaining increased carbon
14-PSIL MAGIC:增加碳的多层方法
  • 批准号:
    BB/M01133X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant
Stomatal-based systems analysis of water use efficiency
基于气孔的水利用效率系统分析
  • 批准号:
    BB/L001276/1
  • 财政年份:
    2014
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Research Grant

相似国自然基金

基于接力催化的CO2加氢直接高选择性制乙烯多功能催化剂的研究
  • 批准号:
    JCZRYB202500767
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
页岩微纳米孔隙水的移动性及CO2-水-岩反应对CH4/CO2运移的影响机制
  • 批准号:
    JCZRQN202500299
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
深部咸水层CO2 封存盖层多尺度蠕变特性及临界幂律灾变机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒽醌功能化的介孔氮化碳催化有机污染物光降解耦合CO2光还原转化为燃料的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
不同相态CO2对深部低渗不可采煤层气藏二氧化碳封存机制及潜力评估
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型核壳金属氧化物@沸石双功能催化剂可控制备及温室气体CO2加氢制乙烯反应机制的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
海洋溶解CO2传感器应用于原位长期监测的适应性改进
  • 批准号:
    MS25D060007
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多尺寸Ag基团簇电催化还原CO2的机器学习理论研究
  • 批准号:
    QN25A040007
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
有序合金电催化CO2还原
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    100.0 万元
  • 项目类别:
    省市级项目
基于CuM纳米簇非对称脉冲电催化 CO2/NO3-共还原合成尿素研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Molecular mechanisms of proton-sensing in CO2-dependent breathing
CO2 依赖性呼吸中质子传感的分子机制
  • 批准号:
    10740838
  • 财政年份:
    2022
  • 资助金额:
    $ 80.18万
  • 项目类别:
Development of a CO2-bicarbonate combined membrane capture system for accessible treatment of acute respiratory failure.
开发 CO2-碳酸氢盐联合膜捕获系统,用于治疗急性呼吸衰竭。
  • 批准号:
    10258029
  • 财政年份:
    2021
  • 资助金额:
    $ 80.18万
  • 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
  • 批准号:
    10398247
  • 财政年份:
    2021
  • 资助金额:
    $ 80.18万
  • 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
  • 批准号:
    10187218
  • 财政年份:
    2021
  • 资助金额:
    $ 80.18万
  • 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
  • 批准号:
    10640070
  • 财政年份:
    2021
  • 资助金额:
    $ 80.18万
  • 项目类别:
Investigation of CO2-mediated microvascular blood flow regulation mechanisms in skeletal muscle using direct CO2 microenvironment perturbations
利用直接 CO2 微环境扰动研究骨骼肌中 CO2 介导的微血管血流调节机制
  • 批准号:
    553347-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Effects of CO2 on Regional Cerebral Blood Flow Regulation During Lower-Body Negative Pressure
下半身负压期间二氧化碳对局部脑血流调节的影响
  • 批准号:
    538611-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 80.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Optimization of stomatal regulation that enables both high CO2 absorption and drought tolarance
优化气孔调节,实现高二氧化碳吸收和耐旱性
  • 批准号:
    18K06294
  • 财政年份:
    2018
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulation of leaf photosynthesis at elevated CO2: roles of sugar-sensing and systemic regulation
二氧化碳浓度升高时叶片光合作用的调节:糖感应和系统调节的作用
  • 批准号:
    17H03693
  • 财政年份:
    2017
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Crosstalk regulation of Ca2+ and CO2 signals for bicarbonate transport in algae
藻类中碳酸氢盐运输的 Ca2 和 CO2 信号串扰调节
  • 批准号:
    16K07399
  • 财政年份:
    2016
  • 资助金额:
    $ 80.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了