A SNARE-Aquaporin complex in stomatal hydraulics
气孔水力学中的 SNARE-水通道蛋白复合物
基本信息
- 批准号:BB/X013383/1
- 负责人:
- 金额:$ 88.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stomata are pores that mediate gaseous exchange across the impermeable cuticle of plant leaves. They open for CO2 entry when photosynthesis depletes CO2 inside the leaf, and they close to reduce the transpiration of water vapour and prevent leaf drying when atmospheric humidity is low. Stomata are at the centre of a crisis in water availability and crop production that is beginning to unfold and can only escalate as the global demand, especially in agriculture, outstrips fresh water supplies. Thus stomata are an important target in efforts to enhance crop performance and efficiencies.Stomata of most plants track the immediate demand for CO2 by photosynthesis, responding to CO2 within the leaf, opening in the light and closing in the dark. However, stomatal responses are slow by comparison with that of photosynthesis. Fluctuations in daylight, for example as clouds pass overhead, degrade photosynthesis and reduce water use efficiency (WUE=amount of carbon fixed in photosynthesis/amount of water transpired), principally because stomata generally lag behind changes in light. Synthetic bioengineering has shown substantial gains in photosynthesis and WUE by accelerating the speed of stomatal response. We need now to understand how such gains might be achieved using the processes native to the stomata.Stomatal movement is driven by solute and water transport across the membrane of the guard cells that surround the stomatal pore. Guard cells harbour ion channel proteins to facilitate solute flux and aquaporins to mediate water flux, and they rely on a traffic of membrane vesicles to adjust cell surface area during stomatal movements. Thus, coordination of these three processes is essential for stomatal responses. From our previous work, we know that the dominant ion flux through K+ channels is coupled to membrane traffic by binding between subsets of channels and so-called SNARE proteins that facilitate vesicle traffic and are conserved across land plants. These interactions ensure solute flux and membrane traffic operate in 'lock-step' within guard cells. There is some evidence for a parallel coordination of water flux through aquaporins, but until now we have lacked an understanding of how this coordination might arise.Plasma membrane (PIP) aquaporins are found across all angiosperms. Three PIPs contribute to water flux in guard cells of the model plant Arabidopsis although one, PIP2;1, dominates. We recently uncovered a selective interaction between all three PIPs and the SYP121 protein, one of two principal SNAREs at the plasma membrane. These interactions depend on a cytosolic N-terminal region of SYP121 that is sequence-divergent, but functionally interchangable with other SNAREs and is widely recognised to regulate SNARE activity and vesicle traffic in all eukaryotes. Most exciting, we find that a chimeric SYP121 incorporating the same region of a non-interacting SNARE slows stomatal opening and closing when expressed in guard cells and suppresses WUE and growth when plants experience fluctuating daylight.Our findings are the first direct evidence for SYP121-PIP binding in stomatal movements, and they point to the SNARE subdomain responsible for this action in vivo. SYP121 also binds guard cell K+ channels, coordinating vesicle traffic with K+ flux. Thus, SYP121-PIP binding suggests a SNARE nexus in stomatal regulation; it begs questions about the coordination of PIP and K+ channel binding; and it challenges established dogma about the roles of vesicle traffic in aquaporin hydraulics that impact on WUE and plant biomass gain.We propose now to resolve the binding and function of SYP121 with the guard cell PIPs and to establish the consequences for the plant. This research is to understand the fundamental rules of life. Understanding this SNARE nexus nonetheless carries the promise of a potential target for future bioengineering to accelerate stomatal movements and enhance crop efficiencies.
气孔是介导气体交换穿过植物叶片的不可渗透的角质层的孔。当光合作用耗尽叶片内的CO2时,它们会打开以供CO2进入,当大气湿度较低时,它们会关闭以减少水蒸气的蒸腾作用并防止叶片干燥。气孔是水供应和作物生产危机的核心,这场危机正在开始显现,随着全球需求,特别是农业需求,超过淡水供应,危机只会升级。因此,气孔是提高作物性能和效率的重要目标。大多数植物的气孔通过光合作用跟踪对CO2的即时需求,在叶片内响应CO2,在光照下打开,在黑暗中关闭。然而,气孔的反应与光合作用相比是缓慢的。日光的波动,例如当云层从头顶经过时,会降低光合作用并降低水分利用效率(WUE=光合作用中固定的碳量/蒸腾的水量),主要是因为气孔通常滞后于光的变化。合成生物工程通过加快气孔反应速度,在光合作用和WUE方面取得了显着进展。我们现在需要了解这些增益是如何利用气孔本身的过程来实现的。气孔运动是由溶质和水分穿过气孔周围保卫细胞的膜来驱动的。保卫细胞窝藏离子通道蛋白,以促进溶质通量和水通道蛋白介导的水通量,他们依赖于交通的膜泡,以调整细胞表面积在气孔运动。因此,这三个过程的协调是至关重要的气孔反应。从我们以前的工作中,我们知道,通过K+通道的主要离子通量耦合到膜交通的通道和所谓的SNARE蛋白,促进囊泡交通和陆地植物之间的子集之间的结合。这些相互作用确保溶质通量和膜流量在保卫细胞内以“锁步”操作。有一些证据表明,水通量通过水通道蛋白的平行协调,但到目前为止,我们还没有了解这种协调可能会出现。质膜(PIP)水通道蛋白在所有被子植物中发现。三种PIP有助于模式植物拟南芥保卫细胞中的水通量,尽管其中一种PIP 2;1占主导地位。我们最近发现了所有三种PIP和SYP 121蛋白之间的选择性相互作用,SYP 121蛋白是质膜上两种主要SNARE之一。这些相互作用依赖于SYP 121的胞质N-末端区域,该区域是序列发散的,但在功能上可与其他SNARE互换,并且被广泛认为在所有真核生物中调节SNARE活性和囊泡交通。最令人兴奋的是,我们发现,嵌合SYP 121纳入非相互作用的SNARE相同区域时,在保卫细胞表达减缓气孔打开和关闭,并抑制WUE和生长时,植物经历波动的日光。我们的研究结果是第一个直接证据SYP 121-PIP结合气孔运动,他们指出SNARE亚域负责这一行动在体内。SYP 121还结合保卫细胞K+通道,协调囊泡交通与K+通量。因此,SYP 121-PIP结合表明气孔调节中的SNARE关系;它回避了PIP和K+通道结合的协调问题;并且它挑战了关于囊泡交通在水通道蛋白水力学中影响WUE和植物生物量增益的作用的既定教条。我们现在建议解决SYP 121与保卫细胞PIP的结合和功能,并建立对植物的后果。这项研究是为了了解生命的基本规则。尽管如此,理解这种SNARE关系仍有望成为未来生物工程的潜在目标,以加速气孔运动并提高作物效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Blatt其他文献
Long-Term Treatment Outcomes and Predictors of Treatment Success following Genicular Nerve Radiofrequency Neurotomy for Chronic Knee Pain; a Cross-Sectional Cohort Study
- DOI:
10.1016/j.inpm.2023.100303 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Tyler T. Woodworth;Marc Caragea;Jason Mascoe;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd Brown;Daniel Carson;Keith Kuo;Dustin Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Megan Mills;Taylor Burnham;Aaron Conger;Zachary L. McCormick - 通讯作者:
Zachary L. McCormick
The association of payer type on genicular radiofrequency neurotomy treatment outcomes: Results of a cross-sectional study
付款人类型与膝关节射频神经切断术治疗结果的关联:横断面研究的结果
- DOI:
10.1016/j.inpm.2024.100407 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Samantha Braun;Jason Mascoe;Marc Caragea;Tyler Woodworth;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd K. Brown;Daniel Carson;Keith T. Kuo;Dustin J. Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Amanda N Cooper;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick - 通讯作者:
Zachary L. McCormick
Evaluating the Effectiveness of Genicular Radiofrequency Neurotomy for Chronic Knee Pain using the Patient-Reported Outcomes Measurement Information System (PROMIS) Global Health Physical Function Domain: Results of a Cross-Sectional Study
- DOI:
10.1016/j.inpm.2023.100304 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Todd K. Brown;Marc A. Caragea;Margaret Beckwith;Amelia Ni;Ling Chen;Tyler Woodworth;Michael Blatt;Cole Cheney;Daniel Carson;Keith T. Kuo;Dustin Randall;Emily Y. Huang;Andrea Carefoot;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick - 通讯作者:
Zachary L. McCormick
Michael Blatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Blatt', 18)}}的其他基金
Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation
解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节
- 批准号:
BB/W001217/1 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
- 批准号:
BB/T013508/1 - 财政年份:2021
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Engineering ion flux of the stomatal complex for enhanced photosynthesis and water use efficiency
工程气孔复合体的离子通量以增强光合作用和水分利用效率
- 批准号:
BB/T006153/1 - 财政年份:2020
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
15 NSFBIO SAUR regulation of stomatal aperture
15 NSFBIO SAUR 气孔孔径调节
- 批准号:
BB/P011586/1 - 财政年份:2017
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
- 批准号:
BB/N01832X/1 - 财政年份:2016
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Dissecting a new and vital checkpoint in SNARE recycling and plant growth
剖析 SNARE 回收和植物生长中一个新的重要检查点
- 批准号:
BB/N006909/1 - 财政年份:2016
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Developing a synthetic approach to manipulating guard cell membrane transport and stomatal control
开发操纵保卫细胞膜运输和气孔控制的合成方法
- 批准号:
BB/L019205/1 - 财政年份:2015
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Analysing GORK clustering for enhanced stomatal control
分析 GORK 聚类以增强气孔控制
- 批准号:
BB/M001601/1 - 财政年份:2015
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
14-PSIL MAGIC: a multi-tiered approach to gaining increased carbon
14-PSIL MAGIC:增加碳的多层方法
- 批准号:
BB/M01133X/1 - 财政年份:2014
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Stomatal-based systems analysis of water use efficiency
基于气孔的水利用效率系统分析
- 批准号:
BB/L001276/1 - 财政年份:2014
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
相似国自然基金
Aquaporin7介导固体压力调控肾透明细胞癌脂质代谢机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
Aquaporin介导的严重创伤后Interleukin-6致血脑屏障通透性增加的分子机制研究
- 批准号:81801909
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
成纤维细胞中雌激素调控的Aquaporin 2与女性压力性尿失禁发病机制的研究
- 批准号:81200429
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Aquaporin 4通过Connexin 43阻断血脑屏障损伤的作用及机制研究
- 批准号:81171129
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant
Development of molecular biological treatment of Eustachian tube dysfunction based on aquaporin functional analysis
基于水通道蛋白功能分析的咽鼓管功能障碍分子生物学治疗进展
- 批准号:
22K09673 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aquaporin-4 regulation by NCX1 in post-ischemic brain swelling
NCX1 对缺血后脑肿胀中水通道蛋白 4 的调节
- 批准号:
10650854 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
The Role of Aquaporin 3 in Arsenic-Induced DNA Damage and Mutagenesis
水通道蛋白 3 在砷诱导的 DNA 损伤和突变中的作用
- 批准号:
10634794 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
Understanding aquaporin-4 relocalisation in the central nervous system
了解水通道蛋白 4 在中枢神经系统中的重新定位
- 批准号:
BB/W00934X/1 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
Fellowship
Discovery of direct water channel inhibitors using aquaporin nanodisc technology
利用水通道蛋白纳米圆盘技术发现直接水通道抑制剂
- 批准号:
22K08304 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Role of Aquaporin 3 in Arsenic-Induced DNA Damage and Mutagenesis
水通道蛋白 3 在砷诱导的 DNA 损伤和突变中的作用
- 批准号:
10679054 - 财政年份:2022
- 资助金额:
$ 88.39万 - 项目类别:
Structure-Function Studies of Aquaporin 0 in Lens Development and Physiology
水通道蛋白 0 在晶状体发育和生理学中的结构功能研究
- 批准号:
10334493 - 财政年份:2021
- 资助金额:
$ 88.39万 - 项目类别:
Structure-Function Studies of Aquaporin 0 in Lens Development and Physiology
水通道蛋白 0 在晶状体发育和生理学中的结构功能研究
- 批准号:
10547773 - 财政年份:2021
- 资助金额:
$ 88.39万 - 项目类别:
Unravelling Design Rules For Creating Water Purification Membranes Based On Immobilized Aquaporin Proteins
揭示基于固定化水通道蛋白创建水净化膜的设计规则
- 批准号:
EP/V04804X/1 - 财政年份:2021
- 资助金额:
$ 88.39万 - 项目类别:
Research Grant