Engineering ion flux of the stomatal complex for enhanced photosynthesis and water use efficiency

工程气孔复合体的离子通量以增强光合作用和水分利用效率

基本信息

  • 批准号:
    BB/T006153/1
  • 负责人:
  • 金额:
    $ 83.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Stomata are pores that open and close to balance the requirement for CO2 entry to the leaf for photosynthesis against the need to reduce water loss via transpiration and prevent leaf drying. Stomata are at the centre of a crisis in water availability and crop production that is expected to unfold over the next 20-30 years: globally, agricultural water usage has increased 6-fold in the past 100 years, twice as fast as the human population, and is projected to double again before 2030. Thus stomata are an important target in efforts to improve crop performance, especially in the face of global climate change. Stomatal opening and closing are driven by solute and water transport of the guard cells which surround the stomatal pore. Our deep knowledge of these processes has made the guard cell one of the best-known plant cell models and gives real substance to prospects for engineering stomata to improve water use by crops.By contrast, we know very little of the surrounding cells, sometimes called subsidiary cells, adjacent the guard cells in the epidermis. Changes in the ion contents of surrounding cells originally led to the idea of a 'shuttling' of solute between surrounding and guard cells. It has been argued that the surrounding cells store solute - notably K+ - for use by the guard cells during stomatal opening and, by releasing this solute, they also relieve the turgor that opposes the guard cell expansion to promote stomatal opening. Thus, in principle the stomatal complex may be considered a two-cell, two-stroke 'pump' for solute transfer between surrounding and guard cells, thereby accelerating stomatal kinetics. Until now, however, tools to probe cellular function within the stomatal complex have been lacking.In the natural environment light fluctuates, for example as clouds pass over. The stomata of most plants respond to light by opening the stomatal pore to increase CO2 access for photosynthesis, and they reduce the pore aperture when the light intensity drops and the demand for CO2 by photosynthesis declines. Photosynthesis generally tracks light fluctuations, but stomata are much slower to respond. The slower response of stomata can limit gas exchange and reduce carbon assimilation by photosynthesis when light intensity rises, and it can lead to transpiration without corresponding assimilation when light intensity drops quickly. We and others have reasoned that assimilation, and consequently biomass generation, could be enhanced concurrent with an decrease in water use by the plant if the rates of stomatal movements could be better matched to variations in photosynthetic demand.Recently, we found that accelerating ion flux in stomatal guard cells by introducing a light-activated K+ channel, BLINK1, was sufficient to increase the biomass and reduce the associated water use by 2-fold in the model plant Arabidopsis. These findings demonstrate the potential of accelerating stomata as a strategy to enhance crop gains while conserving water. The photocontrol offered by optogenetic tools such as BLINK1 also offers a means to probing the function of surrounding cells in the stomatal complex and, potentially, to further enhancing stomatal kinetics.We propose here an interlinked effort to address this long-outstanding question of whether and, if so, how surrounding cells participate in stomatal movements and to translate the knowledge of stomatal kinetics in a practical demonstration with two model crops. We will build on the success with BLINK1 in Arabidopsis for these purposes. Our overarching aim is to extend the gains achieved to date in Arabidopsis, informed by new knowledge of surrounding cell function in the stomatal complex, as strategies for enhancing crop yields and reducing agricultural water consumption.
气孔是开闭以平衡CO2进入叶片进行光合作用的需要与通过蒸腾减少水分损失和防止叶片干燥的需要的孔。气孔是未来20-30年水资源和作物生产危机的核心:在过去100年中,全球农业用水量增加了6倍,是人口增长速度的两倍,预计在20-30年之前将再翻一番。因此,气孔是努力提高作物性能的重要目标,特别是在全球气候变化的情况下。气孔开闭是由气孔周围保卫细胞的溶质和水分运输所驱动的。我们对这些过程的深入了解使保卫细胞成为最著名的植物细胞模型之一,并为设计气孔以改善作物水分利用的前景提供了真实的物质。相比之下,我们对表皮保卫细胞附近的周围细胞(有时称为附属细胞)知之甚少。周围细胞中离子含量的变化最初导致了溶质在周围细胞和保卫细胞之间“穿梭”的想法。有人认为,周围的细胞储存溶质-特别是K+ -用于保卫细胞在气孔开放过程中,并通过释放这种溶质,他们也缓解了膨压,反对保卫细胞扩张,促进气孔开放。因此,在原则上气孔复合体可以被认为是一个两细胞,两冲程的“泵”周围和保卫细胞之间的溶质转移,从而加速气孔动力学。然而,到目前为止,还缺乏研究气孔复合体中细胞功能的工具。在自然环境中,光线会发生波动,例如当云层经过时。大多数植物的气孔对光照的反应是通过打开气孔来增加光合作用的CO2进入,当光照强度下降和光合作用对CO2的需求下降时,气孔孔径会减小。光合作用通常跟踪光的波动,但气孔的反应要慢得多。当光照强度上升时,气孔响应较慢,限制了气体交换,减少了光合作用对碳的同化;当光照强度迅速下降时,气孔响应较慢,导致蒸腾作用而没有相应的同化作用。我们和其他人推测,如果气孔运动速率能够更好地与光合需求的变化相匹配,那么在减少植物用水的同时,同化作用以及生物量的产生可以得到增强。最近,我们发现通过引入光激活的K+通道BLINK 1,足以在模式植物拟南芥中增加生物量并将相关的用水量减少2倍。这些研究结果表明,加速气孔作为一种策略,以提高作物收益,同时保持水分的潜力。由光遗传学工具如BLINK 1提供的光控制也提供了一种手段来探测气孔复合体中周围细胞的功能,并可能进一步增强气孔动力学。如何周围的细胞参与气孔运动和翻译知识的气孔动力学在一个实际的示范与两个模式作物。我们将基于BLINK 1在拟南芥中的成功来实现这些目的。我们的总体目标是扩大迄今为止在拟南芥中取得的成果,通过对气孔复合体中周围细胞功能的新知识,作为提高作物产量和减少农业用水量的策略。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation.
  • DOI:
    10.1093/plphys/kiab032
  • 发表时间:
    2021-04-23
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Klejchova M;Silva-Alvim FAL;Blatt MR;Alvim JC
  • 通讯作者:
    Alvim JC
Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests.
快速蓝光反应的进化与被子植物森林中蕨类植物的爆炸性多样化有关。
  • DOI:
    10.1111/nph.17135
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cai S;Huang Y;Chen F;Zhang X;Sessa E;Zhao C;Marchant DB;Xue D;Chen G;Dai F;Leebens-Mack JH;Zhang G;Shabala S;Christie JM;Blatt MR;Nevo E;Soltis PS;Soltis DE;Franks PJ;Wu F;Chen ZH
  • 通讯作者:
    Chen ZH
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Blatt其他文献

Long-Term Treatment Outcomes and Predictors of Treatment Success following Genicular Nerve Radiofrequency Neurotomy for Chronic Knee Pain; a Cross-Sectional Cohort Study
  • DOI:
    10.1016/j.inpm.2023.100303
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tyler T. Woodworth;Marc Caragea;Jason Mascoe;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd Brown;Daniel Carson;Keith Kuo;Dustin Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Megan Mills;Taylor Burnham;Aaron Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick
The association of payer type on genicular radiofrequency neurotomy treatment outcomes: Results of a cross-sectional study
付款人类型与膝关节射频神经切断术治疗结果的关联:横断面研究的结果
  • DOI:
    10.1016/j.inpm.2024.100407
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Braun;Jason Mascoe;Marc Caragea;Tyler Woodworth;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd K. Brown;Daniel Carson;Keith T. Kuo;Dustin J. Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Amanda N Cooper;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick
Evaluating the Effectiveness of Genicular Radiofrequency Neurotomy for Chronic Knee Pain using the Patient-Reported Outcomes Measurement Information System (PROMIS) Global Health Physical Function Domain: Results of a Cross-Sectional Study
  • DOI:
    10.1016/j.inpm.2023.100304
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Todd K. Brown;Marc A. Caragea;Margaret Beckwith;Amelia Ni;Ling Chen;Tyler Woodworth;Michael Blatt;Cole Cheney;Daniel Carson;Keith T. Kuo;Dustin Randall;Emily Y. Huang;Andrea Carefoot;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick

Michael Blatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Blatt', 18)}}的其他基金

A SNARE-Aquaporin complex in stomatal hydraulics
气孔水力学中的 SNARE-水通道蛋白复合物
  • 批准号:
    BB/X013383/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation
解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节
  • 批准号:
    BB/W001217/1
  • 财政年份:
    2022
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
  • 批准号:
    BB/T013508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
15 NSFBIO SAUR regulation of stomatal aperture
15 NSFBIO SAUR 气孔孔径调节
  • 批准号:
    BB/P011586/1
  • 财政年份:
    2017
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
  • 批准号:
    BB/N01832X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Dissecting a new and vital checkpoint in SNARE recycling and plant growth
剖析 SNARE 回收和植物生长中一个新的重要检查点
  • 批准号:
    BB/N006909/1
  • 财政年份:
    2016
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Developing a synthetic approach to manipulating guard cell membrane transport and stomatal control
开发操纵保卫细胞膜运输和气孔控制的合成方法
  • 批准号:
    BB/L019205/1
  • 财政年份:
    2015
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Analysing GORK clustering for enhanced stomatal control
分析 GORK 聚类以增强气孔控制
  • 批准号:
    BB/M001601/1
  • 财政年份:
    2015
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
14-PSIL MAGIC: a multi-tiered approach to gaining increased carbon
14-PSIL MAGIC:增加碳的多层方法
  • 批准号:
    BB/M01133X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant
Stomatal-based systems analysis of water use efficiency
基于气孔的水利用效率系统分析
  • 批准号:
    BB/L001276/1
  • 财政年份:
    2014
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Research Grant

相似国自然基金

超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
一种植物特有的新型内质网衍生囊泡的形成机制及生物学功能研究
  • 批准号:
    32000143
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向多传感器信息融合移动焊接机器人PEMFC/Li-ion电池系统能量分配优化控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
小立碗藓转录因子PpTF66调控离子通道PpSOT1在盐胁迫应答中的作用机制
  • 批准号:
    31970658
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
钙信号负向调节因子IRBIT抑制肝癌细胞恶性生物学行为的分子机制研究
  • 批准号:
    31960151
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
基于钙信号特征机制的肿瘤转移调控研究
  • 批准号:
    31970729
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
电动汽车Li-ion电池与SC混合储能系统能量管理策略研究
  • 批准号:
    51677058
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
抗肿瘤转移先导化合物ION-31a的衍生合成、分子机制及靶点研究
  • 批准号:
    81673310
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
Ion Torrent多基因平行测序技术筛选及鉴定肺腺癌主要的EGFR-TKI耐药驱动变异基因
  • 批准号:
    81372503
  • 批准年份:
    2013
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of MEMS heat flux and ion current sensor for measuring flame wall interaction
开发用于测量火焰壁相互作用的 MEMS 热通量和离子电流传感器
  • 批准号:
    23K03699
  • 财政年份:
    2023
  • 资助金额:
    $ 83.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10662656
  • 财政年份:
    2022
  • 资助金额:
    $ 83.26万
  • 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10791996
  • 财政年份:
    2022
  • 资助金额:
    $ 83.26万
  • 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10405276
  • 财政年份:
    2022
  • 资助金额:
    $ 83.26万
  • 项目类别:
Magnesium flux compendium: Discover ligands, channels, and metabolic signals
镁通量概要:发现配体、通道和代谢信号
  • 批准号:
    10627888
  • 财政年份:
    2022
  • 资助金额:
    $ 83.26万
  • 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
  • 批准号:
    10322143
  • 财政年份:
    2021
  • 资助金额:
    $ 83.26万
  • 项目类别:
Ion Flux Regulation of Macrophage Plasticity in Lung Injury and Repair
肺损伤与修复中巨噬细胞可塑性的离子通量调节
  • 批准号:
    10701929
  • 财政年份:
    2021
  • 资助金额:
    $ 83.26万
  • 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
  • 批准号:
    10154169
  • 财政年份:
    2021
  • 资助金额:
    $ 83.26万
  • 项目类别:
Control of calcium flux and mitochondrial fission by the Charcot Marie Tooth disease protein Mfn2.
腓骨肌萎缩症蛋白 Mfn2 对钙通量和线粒体裂变的控制。
  • 批准号:
    10540812
  • 财政年份:
    2021
  • 资助金额:
    $ 83.26万
  • 项目类别:
Ion Flux Regulation of Macrophage Plasticity in Lung Injury and Repair
肺损伤与修复中巨噬细胞可塑性的离子通量调节
  • 批准号:
    10170863
  • 财政年份:
    2021
  • 资助金额:
    $ 83.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了