Structure of the assembly platform of the bacterial type II secretion system

II型细菌分泌系统组装平台的结构

基本信息

  • 批准号:
    BB/W006693/1
  • 负责人:
  • 金额:
    $ 73.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The bacterial type II secretion system delivers harmful proteins which can have devastating effects on animals, humans and plants. Human pathogens such as enterotoxigenic Escherichia coli, Vibrio cholerae and Pseudomonas aeruginosa cause children's diarrhea, cholera and respiratory infections, respectively, and there are many deaths annually. It has recenly been demonstrated that the type II secretion system is very important for nosocomial pathogen survival in humans where multi-drug resistance has developed. Moreover, impairment of the type II secretion system has been shown to allow the innate immune system to clear infection. Plant pathogens relying on the type II secretion system such as Dickeya, Pectobacterium and Xanthomonascause are responsible for devastating crop loss in the UK and Europe. The lytic enzymes secreted through this system destroy plant tissues and threaten food security. The bacterial type II secretion system spans the two membranes of the Gram-negative cell wall. Secretion is achieved by an inner-membrane complex assembling a short pilus to push the recruited effector from the periplasm (the space between the two membranes) through the gated pore in the outer-membrane. The energy needed for pilus assembly is provided by the cytoplasmic ATPase. We have made excellent progress in imaging the type II secretion system. We have purified, imaged and generated 3D models of the inner-membrane assembly platform and associated ATPase. We have produced and imaged the entire envelope-spanning secretion system. In this proposal we shall extend the stability and resolution of these complexes so that we can build accurate molecular models of the inner-membrane assembly platform. We shall also image the assembly platform in the presence of the outer-membrane secretin to capture the arrangement of the periplasmic domains extending from the inner-membrane assembly platform. We shall achieve these results using cryo-electron microscopy. To demonstrate we can produce the deliverables stated in the proposal we have collected preliminary data on the inner-membrane assembly platform and produced a preliminary structure of the ATPase. We anticipate capturing the secretion system in different states and to be able to model the structural transitions between states. We are supported by our collaborator who can reverse engineer the type II secretion system in the bacterium to confirm the importance of the interactions we see in our experiments in the live bacterium.As a result of this work, we will determine the structure of the inner-membrane assembly platform and its interaction with the cytoplasmic ATPase. We shall elucidate the structural transitions that can occur from the different complexes trapped or dissected from micrographs and shall provide a structural basis for revealing how the ATPase drives pilus assembly. We also aim to determine the organisation of domains in the periplasm, and this will help us to understand how specific proteins substrates are recruited to the secretion system and how signal is transduced between periplasm and the cytoplasm across the inner membrane assembly complex. Ultimately this work will help underpin the development of new antibiotics to combat infection.
细菌II型分泌系统提供有害的蛋白质,这些蛋白质可能对动物、人类和植物产生破坏性影响。人类病原体,如肠致病性大肠杆菌、霍乱弧菌和铜绿假单胞菌,分别引起儿童腹泻、霍乱和呼吸道感染,每年有许多人死亡。最近已经证明,II型分泌系统对于已经发展出多药耐药性的人类中的医院病原体存活非常重要。此外,II型分泌系统的损伤已显示允许先天免疫系统清除感染。依赖于II型分泌系统的植物病原体,如Dickeya,Pectobacterium和Xanthomonascause是英国和欧洲毁灭性作物损失的原因。通过该系统分泌的裂解酶破坏植物组织并威胁粮食安全。细菌II型分泌系统跨越革兰氏阴性细胞壁的两个膜。分泌是通过内膜复合物组装短菌毛以将来自周质(两个膜之间的空间)的募集效应物推动通过外膜中的门控孔来实现的。菌毛组装所需的能量由细胞质ATP酶提供。我们在II型分泌系统成像方面取得了出色的进展。我们已经纯化,成像和生成内膜组装平台和相关ATP酶的3D模型。我们已经制作并成像了整个跨膜分泌系统。在这个建议中,我们将扩展这些复合物的稳定性和分辨率,以便我们可以建立准确的分子模型的内膜组装平台。我们还将在外膜分泌素存在下对组装平台成像,以捕获从内膜组装平台延伸的周质域的排列。我们将使用低温电子显微镜获得这些结果。为了证明我们可以生产提案中所述的可交付成果,我们收集了内膜组装平台的初步数据,并生产了ATP酶的初步结构。我们期望捕获不同状态下的分泌系统,并能够模拟状态之间的结构转换。我们得到了我们的合作者的支持,他们可以对细菌中的II型分泌系统进行反向工程,以证实我们在活细菌实验中看到的相互作用的重要性。作为这项工作的结果,我们将确定内膜组装平台的结构及其与细胞质ATP酶的相互作用。我们将阐明从显微照片中捕获或解剖的不同复合物可能发生的结构转变,并为揭示ATP酶如何驱动菌毛组装提供结构基础。我们还旨在确定周质中结构域的组织,这将有助于我们了解特定蛋白质底物如何被招募到分泌系统,以及信号如何在周质和细胞质之间跨内膜组装复合物进行转导。最终,这项工作将有助于开发新的抗生素来对抗感染。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaffolding Protein GspB/OutB Facilitates Assembly of the Dickeya dadantii Type 2 Secretion System by Anchoring the Outer Membrane Secretin Pore to the Inner Membrane and to the Peptidoglycan Cell Wall.
  • DOI:
    10.1128/mbio.00253-22
  • 发表时间:
    2022-06-28
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhang, Shiheng;Gu, Shuang;Rycroft, Piers;Ruaudel, Florence;Delolme, Frederic;Robert, Xavier;Ballut, Lionel;Pickersgill, Richard W.;Shevchik, Vladimir E.
  • 通讯作者:
    Shevchik, Vladimir E.
Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation.
  • DOI:
    10.1038/s41522-022-00272-5
  • 发表时间:
    2022-02-25
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Corsini PM;Wang S;Rehman S;Fenn K;Sagar A;Sirovica S;Cleaver L;Edwards-Gayle CJC;Mastroianni G;Dorgan B;Sewell LM;Lynham S;Iuga D;Franks WT;Jarvis J;Carpenter GH;Curtis MA;Bernadó P;Darbari VC;Garnett JA
  • 通讯作者:
    Garnett JA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Pickersgill其他文献

Richard Pickersgill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Pickersgill', 18)}}的其他基金

Cryo-electron microscope for structural and cell biology
用于结构和细胞生物学的冷冻电子显微镜
  • 批准号:
    BB/R000514/1
  • 财政年份:
    2017
  • 资助金额:
    $ 73.8万
  • 项目类别:
    Research Grant
Enzymes as traps in the elucidation of complex biochemical pathways
酶作为阐明复杂生化途径的陷阱
  • 批准号:
    BB/I013334/1
  • 财政年份:
    2012
  • 资助金额:
    $ 73.8万
  • 项目类别:
    Research Grant
Elucidation and evolution of substrate recognition and reaction mechanism in the methyltransferases of cobalamin biosynthesis
钴胺素生物合成甲基转移酶底物识别和反应机制的阐明和进化
  • 批准号:
    BB/E002137/1
  • 财政年份:
    2007
  • 资助金额:
    $ 73.8万
  • 项目类别:
    Research Grant

相似国自然基金

ENKD1在纺锤体定向中的作用及分子机制
  • 批准号:
    32000490
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
  • 批准号:
    31970660
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
早型星系的测光研究
  • 批准号:
    10973011
  • 批准年份:
    2009
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
功能有机配体新颖设计与有机金属超分子导向组装
  • 批准号:
    20772152
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Single molecule oligopeptide fingerprinting based on templated self-assembly of oligonucleotide structures
基于寡核苷酸结构模板化自组装的单分子寡肽指纹识别
  • 批准号:
    10838153
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Personalized neuroblastoma vaccines
个性化神经母细胞瘤疫苗
  • 批准号:
    10713548
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Kinetochore Assembly and Regulation
着丝粒组装和调控
  • 批准号:
    10717202
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10746903
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Bacteriophage virus-like particle based vaccines against oxycodone
基于噬菌体病毒样颗粒的羟考酮疫苗
  • 批准号:
    10750819
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
  • 批准号:
    10738545
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
  • 批准号:
    10743144
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
Targeted RNA delivery using ribonucleoprotein
使用核糖核蛋白进行靶向 RNA 递送
  • 批准号:
    10611640
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
A high-throughput spheroid fusion platform for the templated-assembly of 3D neuromuscular junctions
用于 3D 神经肌肉接头模板组装的高通量球体融合平台
  • 批准号:
    NC/X002187/1
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
    Research Grant
Chondrofluid for arthroscopic knee cartilage repair
用于关节镜膝关节软骨修复的软骨液
  • 批准号:
    10761624
  • 财政年份:
    2023
  • 资助金额:
    $ 73.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了